Using 1libpolymake.so

polymake—workshop
Darmstadt 2011

Benjamin Lorenz

Goethe—Universitat Frankfurt
blorenz@math.uni-frankfurt.de

01.04.2011

Benjamin Lorenz Using libpolymake.so

polymake structure

The usual polymake consists of

>

a (small) perl script polymake
which loads several perl modules for
¢ managing (polymake—)objects, properties, rules

¢ the shell, the scheduler
¢ and some more technical stuff

¢ lots of .rules files (parsed by the perl modules)

>

¢ several shared libraries (.so) for

¢ hacking into the perl interpreter
¢ the C++—clients of each application (including common)

libpolymake consists of
¢ one shared library 1ibpolymake.so which is linked against
¢ libperl.so to load all perl modules and then the rule-base

¢ which again load the other shared libraries of all applications

Benjamin Lorenz Using libpolymake.so

Using 1ibpolymake in five short steps

¢ #include <polymake/Main.h>
¢ initialize polymake by creating an instance of
polymake: :Main
¢ set an application
¢ work with polymake like in any C++ client (see PTL,CPP)

¢ link it against 1ibpolymake.so and few other libraries

Benjamin Lorenz Using libpolymake.so

one-slide—example

#include <polymake/Main.h>
#include <polymake/Matrix.h>
#include <polymake/SparseMatrix.h>
#include <polymake/Rational.h>
using namespace polymake;

int main(int argc, const charx argv[]) {
try {
const int dim = 4;
Main pm;

}
}

pm.set_application (" polytope”);

perl:: Object p(” Polytope<Rational>");

p.take(”"VERTICES") << (ones_vector<Rational >() |
3xunit_matrix<Rational >(dim));

const Matrix<Rational> f = p.give("FACETS");

const Vector<Integer> h = p.give("H.STAR.VECTOR");

cout << "facets” <<endl<< f <<endl<< "hx " << h <<endl;

catch (const std::exception& ex) {

std::cerr << "ERROR: " << ex.what() << endl; return 1;

return O;

}

Benjamin Lorenz Using libpolymake.so

polymake: :Main
Main(user-settings = "user")
The constructor for Main has one optional argument
which specifies if polymake should load user—settings
(usually from ~/ .polymake). Other possible values are
"none” or a path to a configuration directory.

main.set_application("appname")

Sets the current application and loads the corresponding
data if neccessary.

More methods:

set_application_of (Object)

add_extension("dir"), include("rule_file")
set_preference("label"), reset_preference("label")
get_custom("name"), set_custom("name", value),
reset_custom("name")

Benjamin Lorenz Using libpolymake.so

polymake: :perl: :Scope

¢ corresponds to one input line in the shell

¢ used for some cleanup, e.g. removing temporary properties
¢ created from Main via main.newScope ()

¢ need to be properly nested

¢ provides methods to temporary set preferences and custom
variables:

¢ prefer_now("label")
¢ set_custom("name", value)

Benjamin Lorenz Using libpolymake.so

Building your program

There is a small tool polymake-config installed side by side with
the main polymake script, which tells you everything neccessary:

usage: polymake-config --help | --version | [--debug] --OPTION

Print bits of polymake configuration useful to compose Makefiles
for programs linked with its callable library.

OPTION may be one of:

--cc print

--cflags print

--includes print

--1ldflags print

--1libs print
Some notes:

the
the
the
the
the

name of C++ compiler and linker

C++ compiler flags without header paths
C++ compiler flags for header paths
linker flags

libraries to link with

¢ in cflags only ~-DPOLYMAKE DEBUG={0,1} and -£fPIC is obligatory

& in the workshop version 2.9.10 you need to add -1xml2 to the linker

Benjamin Lorenz Using libpolymake.so

