====== BigObject NormalToricVariety ======
//from application [[..:fulton|fulton]]//\\
\\
A normal toric variety given by a fan.
? derived from:
: ''[[..:fan:PolyhedralFan |PolyhedralFan]]''
? Specializations:
:: ''NormalToricVariety::AffineNormalToricVariety'': A normal toric variety that is affine, i.e., given by a cone.
===== Properties =====
==== Algebraic Geometry ====
Properties from algebraic geometry.
----
{{anchor:affine:}}
? **''AFFINE''**
:: A toric variety is __affine__ if the fan consists of a single cone.
? Type:
:''[[..:common#Bool |Bool]]''
----
{{anchor:degenerate:}}
? **''DEGENERATE''**
:: A toric variety is __degenerate__ if the fan is not ''[[..:fan:PolyhedralFan#FULL_DIM |FULL_DIM]]''.
? Type:
:''[[..:common#Bool |Bool]]''
----
{{anchor:divisor:}}
? **''DIVISOR''**
::
? Type:
:''[[..:fulton:TDivisor |TDivisor]]''
? Properties of DIVISOR:
:
? **''MODULE_GENERATORS''**
:: Exponents of the fractional ideal of global sections. This property only makes sense for affine toric varieties.
? Type:
:''[[..:common#Matrix |Matrix]]<[[..:common#Integer |Integer]],[[..:common#NonSymmetric |NonSymmetric]]>''
? depends on extension:
: [[:external_software|4ti2 or libnormaliz]]
----
{{anchor:effective_cone:}}
? **''EFFECTIVE_CONE''**
:: The cone of effective divisors in the rational class group. A class of divisors D is effective if the corresponding polytope PD is non-empty.
? Type:
:''[[..:polytope:Cone |Cone]]<[[..:common#Rational |Rational]]>''
----
{{anchor:fano:}}
? **''FANO''**
:: A toric variety is __fano__ if the anticanonical divisor is ''[[..:fulton:TDivisor#AMPLE |AMPLE]]''.
? Type:
:''[[..:common#Bool |Bool]]''
----
{{anchor:mori_cone:}}
? **''MORI_CONE''**
:: The dual of the ''[[..:fulton:NormalToricVariety#NEF_CONE |NEF_CONE]]''.
? Type:
:''[[..:polytope:Cone |Cone]]<[[..:common#Rational |Rational]]>''
----
{{anchor:nef_cone:}}
? **''NEF_CONE''**
:: The cone of nef divisors in the rational class group. This is the closure of the cone of ample divisors, where a divisor of the variety is ample if the fan coincides with the normal fan of PD; equivalently, a divisor is nef if the inequalities it defines are tight on PD.
? Type:
:''[[..:polytope:Cone |Cone]]<[[..:common#Rational |Rational]]>''
----
{{anchor:projective:}}
? **''PROJECTIVE''**
:: A toric variety is __projective__ if the corresponding fan is the [[..:fan#normal_fan |normal fan]] of some polytope. Alias for property ''[[..:fan:PolyhedralFan#REGULAR |REGULAR]]''.
? Type:
:''[[..:common#Bool |Bool]]''
----
{{anchor:rational_divisor_class_group:}}
? **''RATIONAL_DIVISOR_CLASS_GROUP''**
:: The torsion free part of the class group.
? Type:
:''[[..:fulton:RationalDivisorClassGroup |RationalDivisorClassGroup]]''
----
{{anchor:smooth:}}
? **''SMOOTH''**
:: A toric variety is __smooth__ if the fan is [[..:fan:PolyhedralFan#SMOOTH_FAN |smooth]]. Alias for property ''[[..:fan:PolyhedralFan#SMOOTH_FAN |SMOOTH_FAN]]''.
? Type:
:''[[..:common#Bool |Bool]]''
----
==== Basic properties ====
Properties defining a normal toric variety.
----
{{anchor:generating_polytope:}}
? **''GENERATING_POLYTOPE''**
:: Polytope such that the fan of the toric variety is the normal fan of this polytope. This does not necessarily exist. For determining existence and computation we use Shepards theorem.
? Type:
:''[[..:polytope:Polytope |Polytope]]<[[..:common#Rational |Rational]]>''
----
{{anchor:n_maximal_torus_orbits:}}
? **''N_MAXIMAL_TORUS_ORBITS''**
:: The number of maximal torus orbits. Equals the number of rays of the fan.
? Type:
:''[[..:common#Int |Int]]''
----
{{anchor:orbifold:}}
? **''ORBIFOLD''**
:: A toric variety is an __orbifold__ if the fan is ''[[..:fan:PolyhedralFan#SIMPLICIAL |SIMPLICIAL]]''.
? Type:
:''[[..:common#Bool |Bool]]''
----
==== Combinatorics ====
These properties capture combinatorial information of the object. Combinatorial properties only depend on combinatorial data of the object like, e.g., the face lattice.
----
{{anchor:weight_cone:}}
? **''WEIGHT_CONE''**
:: The weight cone of the algebra yielding the affine normal toric variety. I.e., intersect this cone with the lattice, take the semigroup algebra over it and take the spectrum.
? Type:
:''[[..:polytope:Cone |Cone]]<[[..:common#Rational |Rational]]>''
----