Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
extensions [2019/01/29 21:46]
127.0.0.1 external edit
extensions [2019/05/27 13:35] (current)
lkastner [Lattice Polytopes and Toric Geometry] Remove deprecated extensions, most of the functionality is in core anyway
Line 4: Line 4:
  
 ===== Lattice Polytopes and Toric Geometry ===== ===== Lattice Polytopes and Toric Geometry =====
- 
-  * Lars Kastner/​Benjamin Lorenz: [[https://​github.com/​lkastner|Toric Varieties and Singular interface]] 
- 
-  * Benjamin Lorenz: [[http://​ehrhart.math.fu-berlin.de/​people/​benmuell/​classification.html|classification of smooth lattice polytopes with few lattice points]] 
  
   * Silke Horn/​Andreas Paffenholz:   * Silke Horn/​Andreas Paffenholz:
Line 20: Line 16:
     * //defect polytopes//:​ This extension allows computations used in [[http://​arxiv.org/​abs/​1105.5027|Joswig,​ Paffenholz: Defect Polytopes and Counter-Examples with polymake, arxiv:​1105:​5027]]     * //defect polytopes//:​ This extension allows computations used in [[http://​arxiv.org/​abs/​1105.5027|Joswig,​ Paffenholz: Defect Polytopes and Counter-Examples with polymake, arxiv:​1105:​5027]]
        * polymake 2.12: [[http://​www.mathematik.tu-darmstadt.de/​~paffenholz/​software.html|DefectPolytopes-v0.1]]        * polymake 2.12: [[http://​www.mathematik.tu-darmstadt.de/​~paffenholz/​software.html|DefectPolytopes-v0.1]]
-    * //​[[https://​github.com/​apaffenholz/​polymake_projectionWithSubdivision|projection_with_subdivision]]//:​ Projections of smooth polytopes together with the hyperplane subdivision implied by the facets.  +    * //​[[https://​github.com/​apaffenholz/​polymake_projection_with_subdivision|projection_with_subdivision]]//:​ Projections of smooth polytopes together with the hyperplane subdivision implied by the facets.  
-    * {{:​download:​barvinok-extension-1.0.tar.bz2}}\\ This extension lets you use [[http://www.kotnet.org/​~skimo/​barvinok/​|barvinok]] by Sven Verdolaege for the computation of the number of lattice points in a rational polytope and the coefficients of the Ehrhart polynomial of a lattice polytope.+    * {{:​download:​barvinok-extension-1.0.tar.bz2}}\\ This extension lets you use [[http://barvinok.gforge.inria.fr/​|barvinok]] by Sven Verdolaege for the computation of the number of lattice points in a rational polytope and the coefficients of the Ehrhart polynomial of a lattice polytope.
  
 ===== Tropical Geometry ===== ===== Tropical Geometry =====
Line 29: Line 25:
 ===== Integer Programming ===== ===== Integer Programming =====
  
-  * Matthias Walter: With [[http://​github.com/​xammy/​unimodularity-test/​wiki/​Polymake-Extension|this extension]] you can test an integer matrix for total unimodularity. If the answer is "​no",​ it can return the row/column indices of a submatrix with |det| >= 2. It can also test for the related properties (strong) unimodularity,​ (strong) k-modularity and the Dantzig property. See [[http://www.math.uni-magdeburg.de/​~walter/​TUtest/​|here]] for more information on implementation and theory.+  * Matthias Walter: With [[http://​github.com/​xammy/​unimodularity-test/​wiki/​Polymake-Extension|this extension]] you can test an integer matrix for total unimodularity. If the answer is "​no",​ it can return the row/column indices of a submatrix with |det| >= 2. It can also test for the related properties (strong) unimodularity,​ (strong) k-modularity and the Dantzig property. See [[http://matthiaswalter.org/​TUtest/​|here]] for more information on implementation and theory.
  
 ===== Extended Formulations ===== ===== Extended Formulations =====
Line 40: Line 36:
   * Sven Herrmann and Andreas Spillner: [[http://​www.uea.ac.uk/​computing/​comrit|CoMRiT]]. This extensions contains a new application metric introducing finite metric spaces as objects. The core feature is an algorithm to compute a realisation of a finite metric space using the tight-span, as described in Herrmann, Moulton, Spillner: Computing Realizations of Finite Metric Spaces.   * Sven Herrmann and Andreas Spillner: [[http://​www.uea.ac.uk/​computing/​comrit|CoMRiT]]. This extensions contains a new application metric introducing finite metric spaces as objects. The core feature is an algorithm to compute a realisation of a finite metric space using the tight-span, as described in Herrmann, Moulton, Spillner: Computing Realizations of Finite Metric Spaces.
  
-===== Other ===== 
  
-  * Silke Horn: [[http://​solros.de/​polymake/​poly_db|poly_db]]. Access to the [[polydb|polymake polytope database]]. ​ (Now bundled with polymake) 
-      * releases and other information:​ [[http://​solros.de/​polymake/​poly_db|poly_db]] 
-      * [[user_guide:​howto:​poly_db_tutorial|tutorial]] 
-      * latest: [[http://​github.com/​solros/​poly_db|github]] 
  
  • extensions.1548798380.txt.gz
  • Last modified: 2019/01/29 21:46
  • by 127.0.0.1