Let's look at the graph of a square. Since a square is a 2-cube, we can create the polytope and look at its graph:
> $c=cube(2); > $c->GRAPH->VISUAL;
To study the automorphisms of this graph, we create a props::Graph
object refering to the C++
class named Graph
(see the tutorial on graphs for more details):
> $g=new props::Graph($c->GRAPH->ADJACENCY);
The picture of the graph shows that the node with label 0 is adjacent to the nodes 1 and 2, Node 1 is adjacent to 0 and 3, and so on. For the complete adjacency information you can print $c→GRAPH→ADJACENCY
or just the props::Graph object $g
:
> print rows_labeled($g); 0:1 2 1:0 3 2:0 3 3:1 2
Now, we compute the generators of the automorphism group of this graph (see the tutorial on groups for more info):
> $aut=automorphisms($g);
In this case, the automorphism group has two generators:
> print $aut; 0 2 1 3 1 0 3 2
Each generator is a permutation on the nodes. The first generator fixes the nodes 0 and 3, and exchanges the nodes 1 and 2, i.e., it describes the reflection along the diagonal through 0 and 3. The second generator is the reflection along the horizontal line.
In order to be able to work with the group, we create a new Group object, which lives in the application group
:
> $action = new group::PermutationAction(GENERATORS => $aut); > $autgroup = new group::Group(PERMUTATION_ACTION => $action);
Now we can ask for basic properties of the group, e.g., the number of elements:
> print $autgroup->ORDER; 8
Sometimes, it is useful to know which elements of the group fix a specific set of indices, that is, we are interested in the subgroup which is the stabilizer of the given set. In the first case, we just fix the index 0:
> $s0=new Set<Int>(0); > $stab0=group::stabilizer_of_set($action,$s0);
We learn that the node 0 is only fixed by the permutation 0 2 1 3
:
> print $stab0->ORDER; 2 > print $stab0->PERMUTATION_ACTION->GENERATORS; 0 2 1 3
In the second case, we look at the subgroup which leaves the set {1,2}
invariant:
> $s12=new Set<Int>(1,2); > $stab12=group::stabilizer_of_set($action,$s12);
Now, we obtain a group of order 4:
> print $stab12->ORDER; 4 > print $stab12->PERMUTATION_ACTION->GENERATORS; 3 1 2 0 0 2 1 3
Finally, we compute the orbits of the indices under the three different groups:
> print $stab0->PERMUTATION_ACTION->ORBITS; {0} {1 2} {3} > print $stab12->PERMUTATION_ACTION->ORBITS; {0 3} {1 2} > print $autgroup->PERMUTATION_ACTION->ORBITS; {0 1 2 3}