This took place September 13, 2011, 13:00-18:00 (939 Evans Hall).
The event start out with a short introduction by Bernd Sturmfels to the mathematical problems listed on the Exercise sheet. This was followed by an introduction to polymake as outlined below. Afterwards attendees explored the system via solving exercises.
$c=cube(3); print $c->FACETS; print $c->F_VECTOR; $polar_of_c=polarize($c); print $polar_of_c->F_VECTOR; $polar_of_c->VISUAL; product(n_gon(5),n_gon(7))->SCHLEGEL(FACET=>1); $my_own_cube=new Polytope(POINTS=>[[1,-1,-1,-1],[1,-1,-1,1],[1,-1,1,-1],[1,-1,1,1],[1,1,-1,-1],[1,1,-1,1],[1,1,1,-1],[1,1,1,1]]); print equal_polyhedra($c,$my_own_cube);
$p57=product(n_gon(5),n_gon(7)); print join(", ", $p57->list_properties); $schedule=$p57->get_schedule("GRAPH.BIPARTITE"); print join("\n", $schedule->list); $schedule->apply($p57); print join(", ", $p57->list_properties); print $p57->GRAPH->BIPARTITE;
help 'objects'; help 'objects/Polytope'; help 'VERTICES'; $t=typeof $p57; print join(", ", sorted_uniq(sort { $a cmp $b } map { keys %{$_->properties} } $t, @{$t->super}));
$f = new Integer(1); for ($i = new Integer(100); $i>0; --$i) { $f *= $i; } print $f;
application "topaz"; $rp2=projective_plane(); print $rp2->HOMOLOGY; fan::normal_fan(load("snub-dodecahedron.poly"))->VISUAL;
$c=cube(3); $cc=new Polytope(INEQUALITIES=>($c->FACETS/(new Matrix<Rational>([[2,-1,-1,-1],[2,-1,1,1],[2,1,-1,1],[2,1,1,-1]])))); print $cc->N_FACETS, ", ", $cc->SMOOTH; $cc->VISUAL; $f=fan::normal_fan($cc); $f->VISUAL;