
Overview

1 What Is polymake About?
Design Goals
Ingredients

2 Open Object Model
Applications, Objects and Properties

3 Rule Based Computation
Algorithms as Edges in a Directed Graph

4 Conclusion

Overview

1 What Is polymake About?
Design Goals
Ingredients

2 Open Object Model
Applications, Objects and Properties

3 Rule Based Computation
Algorithms as Edges in a Directed Graph

4 Conclusion

Overview

1 What Is polymake About?
Design Goals
Ingredients

2 Open Object Model
Applications, Objects and Properties

3 Rule Based Computation
Algorithms as Edges in a Directed Graph

4 Conclusion

Overview

1 What Is polymake About?
Design Goals
Ingredients

2 Open Object Model
Applications, Objects and Properties

3 Rule Based Computation
Algorithms as Edges in a Directed Graph

4 Conclusion

Design Goals

Three Golden Rules

1 Infinite extendibility
• Allow to model new (mathematical) objects and integrate them

seemlessly

2 Scalability with the user’s ability to write programs
• Include basic functionality for programming illiterates
• Do not restrict programming experts

3 Do not re-invent the wheel!
• Interfaces to existing code (in arbitrary language/design)

Some Ingredients

• Hybrid design: Perl (interpreted) and C++ (compiled)
• Perl: Server side (= organization/communication)
• C++: Client side (= computation)

• Shell type user interface
• (extension of) Perl as language

• Technical features include:
• C++ template library (extends STL, uses template

meta-programming)
• shared memory communication between client/server,

transaction safe

Some Ingredients

• Hybrid design: Perl (interpreted) and C++ (compiled)
• Perl: Server side (= organization/communication)
• C++: Client side (= computation)

• Shell type user interface
• (extension of) Perl as language

• Technical features include:
• C++ template library (extends STL, uses template

meta-programming)
• shared memory communication between client/server,

transaction safe

Some Ingredients

• Hybrid design: Perl (interpreted) and C++ (compiled)
• Perl: Server side (= organization/communication)
• C++: Client side (= computation)

• Shell type user interface
• (extension of) Perl as language

• Technical features include:
• C++ template library (extends STL, uses template

meta-programming)
• shared memory communication between client/server,

transaction safe

Objects and Properties

• hierarchy of big object types (modelling mathematical concepts)
• e.g., polytopes, simplicial complexes, graphs, . . .
• under control of client/server system
• with templates

• properties as class members (functions or data)
• strongly typed
• a type is a built-in Perl type, a C++ class type, or a big object type
• immutable

• new big object types and properties to a given big object type can
be added at will

• big object types grouped into applications (≈ name spaces)

Graphs as Big Objects

declare object Graph<Dir=Undirected> {

property ADJACENCY : props::Graph<Dir>;

property N_NODES : Int;

property NODE_DEGREES : Array<Int>;

property CONNECTED : Bool;

...

}

Example:

0 1 2

3

$g=new Graph(ADJACENCY=>[[1],[0,2,3],[1],[1]]);

print $g->CONNECTED;

1

Rule Based Computation

• status of a big object defined by properties known/present
• philosophy: object immutable
• new properties computed = knowledge about object augmented

• rule produces new properties from known ones
• source and target properties
• preconditions
• weights (vaguely reflect complexity)
• labels

• server side scheduler computes shortest weighted path from
sources to targets

• rules implicitly define graph w/ subsets of properties as nodes
• Dijkstra type algorithm

Anatomy of a Rule

rule CUBICAL : FACET_SIZES {

my $cubical=1;

foreach my $fs (@{$this->FACET_SIZES}) {

$cubical=0, last if $fs != 8;

}

$this->CUBICAL=$cubical;

}

precondition : GRAPH.BIPARTITE, COMBINATORIAL_DIM {

$this->GRAPH->BIPARTITE && $this->COMBINATORIAL_DIM==4

}

weight 1.10;

Conclusion and More

Applicability

• flexible design for projects which continuously evolve

• high abstraction level on the user’s side

Other Features

• XML file format; XSLT for changes between revisions

• shared memory client/server communication Client/Server Example

• C++ exceptions properly translated into Perl

• C++ template library

Wiki
http://www.opt.tu-darmstadt.de/polymake

http://www.opt.tu-darmstadt.de/polymake

Client/Server Communication: Perl Side

rule VOLUME : VERTICES, TRIANGULATION.FACETS {

volume($this, $this->VERTICES,

$this->TRIANGULATION->FACETS);

}

precondition : BOUNDED;

precondition : FULL_DIM;

weight 2.30;

Conclusion

Client/Server Communication: C++ Side

template <typename MatrixTop , typename Triangulation>

void volume(perl::Object p, const GenericMatrix<MatrixTop>& Points,

const Triangulation& tr)

{

typedef typename MatrixTop::element_type Coord;

Coord volume(0); int d=tr.front().size()-1;

for (typename Entire<Triangulation>::const_iterator s=entire(tr); !s.at_end(); ++s) {

const typename MatrixTop::persistent_type sim=Points.minor(*s,All);

Coord v=abs(det(sim));

volume += v;

}

volume /= Integer::fac(d);

p.take("VOLUME") << volume;

}

FunctionTemplate4perl(

"volume(Polytope Matrix Array< Set<Int> >) : void"

);
Conclusion

	What Is polymake About?
	Design Goals
	Ingredients

	Open Object Model
	Applications, Objects and Properties

	Rule Based Computation
	Algorithms as Edges in a Directed Graph

	Conclusion

