
What’s new in Normaliz?

Richard Sieg joint with
Winfried Bruns

& Christof Söger

NORMALIZ

What’s new in Normaliz?

NORMALIZ

open
source

C++
(boost &
GMP)

Paralleliza-
tion

(OpenMP)
C++ library
libnormaliz

GUI Interface
jNormaliz

Linux, Mac &
Windows

What’s new in Normaliz?

PyNormaliz

NORMALIZ

Version 3.2.0 just released!

http://www.math.uos.de/normaliz

open
source

C++
(boost &
GMP)

Paralleliza-
tion

(OpenMP)
C++ library
libnormaliz

GUI Interface
jNormaliz

Linux, Mac &
Windows

What’s new in Normaliz?

PyNormaliz

NORMALIZ

What’s new in Normaliz?

NORMALIZ

polymakeSingular

CoCoA

GAPSage

Regina

Macaulay 2

What’s new in Normaliz?

NORMALIZ

polymakeSingular

CoCoA

GAPSage

Regina

SCIP

Macaulay 2

What’s new in Normaliz?

Rational Cones

L . . . a lattice (subgroup of Zd)

Rational Cones

L . . . a lattice (subgroup of Zd)

C . . . a (rational polyhedral) cone

C = cone(x1, . . . , xn) ⊂ Rd

= {a1x1 + · · ·+ anxn | a1, . . . , an ∈ R+}
= {x ∈ Rn | Ax ≥ 0}

with a generating system x1, . . . , xn∈ Zd.

Rational Cones

L . . . a lattice (subgroup of Zd)

C . . . a (rational polyhedral) cone

C = cone(x1, . . . , xn) ⊂ Rd

= {a1x1 + · · ·+ anxn | a1, . . . , an ∈ R+}
= {x ∈ Rn | Ax ≥ 0}

with a generating system x1, . . . , xn∈ Zd.

C simplicial: x1, . . . , xn linearly independent

Rational Cones

L . . . a lattice (subgroup of Zd)

C . . . a (rational polyhedral) cone

C = cone(x1, . . . , xn) ⊂ Rd

= {a1x1 + · · ·+ anxn | a1, . . . , an ∈ R+}
= {x ∈ Rn | Ax ≥ 0}

with a generating system x1, . . . , xn∈ Zd.

C simplicial: x1, . . . , xn linearly independent

Theorem [Gordan’s Lemma]

Let C ⊂ Rd be the cone generated by x1, . . . , xn ∈ Zd. Then
C∩L is an affine monoid M , i.e. a finitely generated submonoid
of Zd.

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: x,−x ∈ C ⇒ x = 0.

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: x,−x ∈ C ⇒ x = 0.

x ∈M = C ∩ L, x 6= 0 is irreducible:

x = y + z ⇒ y = 0 or z = 0.

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: x,−x ∈ C ⇒ x = 0.

x ∈M = C ∩ L, x 6= 0 is irreducible:

x = y + z ⇒ y = 0 or z = 0.

The Tasks of Normaliz: Hilbert Basis

Assume C pointed: x,−x ∈ C ⇒ x = 0.

x ∈M = C ∩ L, x 6= 0 is irreducible:

x = y + z ⇒ y = 0 or z = 0.

Theorem

There are only finitely many irreducible elements in C ∩ L
and they form the unique minimal system of generators, the
Hilbert Basis.

The Tasks of Normaliz: Hilbert Series

Second main task: Count lattice points by degree
Hilbert (Ehrhart) function

H(M,k) = #{x ∈M | deg x = k}

Hilbert (Ehrhart) series

HM (t) =
∞∑
k=0

H(M,k)tk.

The Tasks of Normaliz: Hilbert Series

Second main task: Count lattice points by degree
Hilbert (Ehrhart) function

H(M,k) = #{x ∈M | deg x = k}

Hilbert (Ehrhart) series

HM (t) =
∞∑
k=0

H(M,k)tk.

Theorem [Hilbert-Serre, Ehrhart]

? HM (t) is a rational function.
? H(M,k) is a quasi-polynomial for k ≥ 0.

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the
cone is full dimensional and L = Zd.

? Compute a triangulation of the cone, that is a
face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the
cone is full dimensional and L = Zd.

? Compute a triangulation of the cone, that is a
face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the
cone is full dimensional and L = Zd.

? Compute a triangulation of the cone, that is a
face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the
cone is full dimensional and L = Zd.

? Compute a triangulation of the cone, that is a
face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the
cone is full dimensional and L = Zd.

? Compute a triangulation of the cone, that is a
face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Normaliz Algorithm

In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the
cone is full dimensional and L = Zd.

? Compute a triangulation of the cone, that is a
face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section

Simplicial Cones

S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Simplicial Cones

S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Every residue class in Zd/U , U = Zx1 + · · ·+ Zxd, has exactly one
representative in E.

Simplicial Cones

S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Every residue class in Zd/U , U = Zx1 + · · ·+ Zxd, has exactly one
representative in E.
Normaliz generates the points in E. They are candidates for the
Hilbert Basis and their number is given by the volume of the simplex

|E| = vol(S) = det(x1, . . . , xd).

The points in E are then reduced to a Hilbert Basis of S ∩ Zd.

Simplicial Cones

S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Every residue class in Zd/U , U = Zx1 + · · ·+ Zxd, has exactly one
representative in E.
Normaliz generates the points in E. They are candidates for the
Hilbert Basis and their number is given by the volume of the simplex

|E| = vol(S) = det(x1, . . . , xd).

The points in E are then reduced to a Hilbert Basis of S ∩ Zd.

Simplicial Cones

S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Every residue class in Zd/U , U = Zx1 + · · ·+ Zxd, has exactly one
representative in E.
Normaliz generates the points in E. They are candidates for the
Hilbert Basis and their number is given by the volume of the simplex

|E| = vol(S) = det(x1, . . . , xd).

The points in E are then reduced to a Hilbert Basis of S ∩ Zd.

Therefore vol(S) is a critical size for the runtime of Normaliz.

Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

How? Compute points from the cone and use
them for a new triangulation.

Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

(Theoretically) Best choice for these points are the vertices of the
bottom B(S) (union of the bounded faces of conv((S ∩ Zd) \ {0}))

B(S)
How? Compute points from the cone and use
them for a new triangulation.

Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

(Theoretically) Best choice for these points are the vertices of the
bottom B(S) (union of the bounded faces of conv((S ∩ Zd) \ {0}))

B(S)

(Practically) Computation of the whole bottom would equalize the
benefit from the small volume or even make it worse

How? Compute points from the cone and use
them for a new triangulation.

Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

(Theoretically) Best choice for these points are the vertices of the
bottom B(S) (union of the bounded faces of conv((S ∩ Zd) \ {0}))

B(S)

(Practically) Computation of the whole bottom would equalize the
benefit from the small volume or even make it worse

Determine only some points from B(S) using

How? Compute points from the cone and use
them for a new triangulation.

2. Approximation

1. Integer Programming

Integer Programming

S = cone(x1, . . . , xd) simplex in triangulation

Integer Programming

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.

Integer Programming

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.

Solve the IP

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

Integer Programming

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.

Solve the IP

If problem can be solved: form a stellar subdivision with the solution.

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

Integer Programming

S = cone(x1, . . . , xd) simplex in triangulation
GOAL
Compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd) = NTx,

N . . . normal vector on the hyperplane spanned
by x1, . . . , xd.

Solve the IP

If problem can be solved: form a stellar subdivision with the solution.

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

Integer Programming

Algorithm Bottom Points

Input: S = cone(x1, . . . , xd) simplex with
vol(S) ≥ Bound

Return: Points from B(S)
1: B,S ← ∅
2: store S into S
3: while S 6= ∅ do
4: let T = cone(y1, . . . , yd) be the first ele-

ment of S and delete it
5: compute a normal vector N on hyperplane

spanned by y1, . . . , yd
6: compute hyperplanes {H1, . . . , Hd} and

volume of T
7: if vol(T) < Bound then continue

Integer Programming

Algorithm Bottom Points

Input: S = cone(x1, . . . , xd) simplex with
vol(S) ≥ Bound

Return: Points from B(S)
1: B,S ← ∅
2: store S into S
3: while S 6= ∅ do
4: let T = cone(y1, . . . , yd) be the first ele-

ment of S and delete it
5: compute a normal vector N on hyperplane

spanned by y1, . . . , yd
6: compute hyperplanes {H1, . . . , Hd} and

volume of T
7: if vol(T) < Bound then continue

Integer Programming

Algorithm Bottom Points

Input: S = cone(x1, . . . , xd) simplex with
vol(S) ≥ Bound

Return: Points from B(S)
1: B,S ← ∅
2: store S into S
3: while S 6= ∅ do
4: let T = cone(y1, . . . , yd) be the first ele-

ment of S and delete it
5: compute a normal vector N on hyperplane

spanned by y1, . . . , yd
6: compute hyperplanes {H1, . . . , Hd} and

volume of T
7: if vol(T) < Bound then continue

T

H1

H2

y1

y2

Integer Programming

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

Integer Programming

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

y

B = {(1, 2)

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

Integer Programming

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

T1

T2

B = {(1, 2), (1, 1)}

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

Integer Programming

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

B = {(1, 2), (1, 1)}

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

Integer Programming

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

B = {(1, 2), (1, 1)}

We triangulate the lower facets of conv(B ∪ {x1, . . . , xd}) and
evaluate this triangulation with the usual Normaliz algorithm.

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)

Integer Programming

Level 0

Integer Programming

Level 0

Level 1

Integer Programming

Level 0

Level 1

Level 2

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

Gregor Hendel

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 36s 4s

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 36s 4s

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 36s 4s

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 36s 4s

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 36s 4s

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

? use SCIP (3.2.0) via its C++ interace

? parallelization with OpenMP
∗ individual time limit
∗ individual feasibility bounds

hickerson-16 hickerson-18 knapsack 11 60

dimension 9 10 12

simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

improvement factor 25 7.62× 106 1.17× 107

old runtime 2s > 12d > 8d

new runtime 0.5s 36s 4s

SUN xFire 4450, 4 Intel Xeon X7460 processors, 20 threads, SCIPBound = 106

Implementation & Results

Implementation & Results

our choice

Approximation

1. Look at the cross section at level 1 of
the (transformed) simplex.

cross section at level 1

Approximation

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

cross section at level 1

Approximation

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

cross section at level 1

Approximation

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

cross section at level 1

Approximation

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

Approximation

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

Approximation

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

Approximation

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

Approximation

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

⇒ list of points B (bottom candidates)

Approximation

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

⇒ list of points B (bottom candidates)

Choose a grading minimizing point from B and continue as before.

Approximation

1. Look at the cross section at level 1 of
the (transformed) simplex.

2. For each extreme ray/point, triangulate
the lattice cube around it using the
hyperplane arrangement An = {xi = xj}.

3. Detect the minimal face containing the
point and collect its vertices (at most d).

4. Create a candidate list of the new cone,
intersect it with the original cone and do
local reduction.

cross section at level 1

⇒ list of points B (bottom candidates)

Choose a grading minimizing point from B and continue as before.

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

2

2

nr positive halfspaces

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

was already “good”

Partial Fourier-Motzkin Elimination

2

12

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

still extreme ray

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

Partial Fourier-Motzkin Elimination

X

Results

hickerson-16 hickerson-18 knapsack 11 60

simplex vol 9.83 e 7 4.17 e 14 2.8 e 14

bottom vol 8.10 e 5 3.86 e 7 2.02 e 7

(1) (2) (1) (2) (1) (2)

our vol 3.93 e 6 3.93 e 6 5.47 e 7 8.42 e 7 2.39 e 7 9.36 e 9

factor 25 25 7.62 e 6 4.95 e 6 1.09 e 7 2.99 e 4

old time 2s >12d >8d

new time 0.5s 0.4s 46s 50s 5s 2m30s

Results

hickerson-16 hickerson-18 knapsack 11 60

simplex vol 9.83 e 7 4.17 e 14 2.8 e 14

bottom vol 8.10 e 5 3.86 e 7 2.02 e 7

(1) (2) (1) (2) (1) (2)

our vol 3.93 e 6 3.93 e 6 5.47 e 7 8.42 e 7 2.39 e 7 9.36 e 9

factor 25 25 7.62 e 6 4.95 e 6 1.09 e 7 2.99 e 4

old time 2s >12d >8d

new time 0.5s 0.4s 46s 50s 5s 2m30s

Partial Fourier-Motzkin:
no significant improvment, even in the non-simplicial case

