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Rational Cones

L . . . a lattice (subgroup of Zd)

C . . . a (rational polyhedral) cone

C = cone(x1, . . . , xn) ⊂ Rd

= {a1x1 + · · ·+ anxn | a1, . . . , an ∈ R+}
= {x ∈ Rn | Ax ≥ 0}

with a generating system x1, . . . , xn∈ Zd.

C simplicial: x1, . . . , xn linearly independent

Theorem [Gordan’s Lemma]

Let C ⊂ Rd be the cone generated by x1, . . . , xn ∈ Zd. Then
C∩L is an affine monoid M , i.e. a finitely generated submonoid
of Zd.
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The Tasks of Normaliz: Hilbert Basis

Assume C pointed: x,−x ∈ C ⇒ x = 0.

x ∈M = C ∩ L, x 6= 0 is irreducible:

x = y + z ⇒ y = 0 or z = 0.

Theorem

There are only finitely many irreducible elements in C ∩ L
and they form the unique minimal system of generators, the
Hilbert Basis.
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Hilbert (Ehrhart) function

H(M,k) = #{x ∈M | deg x = k}

Hilbert (Ehrhart) series

HM (t) =
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k=0

H(M,k)tk.



The Tasks of Normaliz: Hilbert Series

Second main task: Count lattice points by degree
Hilbert (Ehrhart) function

H(M,k) = #{x ∈M | deg x = k}

Hilbert (Ehrhart) series

HM (t) =
∞∑
k=0

H(M,k)tk.

Theorem [Hilbert-Serre, Ehrhart]

? HM (t) is a rational function.
? H(M,k) is a quasi-polynomial for k ≥ 0.
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In the Normaliz algorithm:
? Preparatory coordinate transformation, s.t. the
cone is full dimensional and L = Zd.

? Compute a triangulation of the cone, that is a
face-to-face decomposition into simplicial
cones. Simplicial cones are generated by
linearly independent vectors.

? Evaluate the simplicial cones in the
triangulation independently from each other.

? Collect the data from the simplicial cones and
process it globally.

? Inverse coordinate transformation.

cross section
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Simplicial Cones

S = cone(x1, . . . , xd) simplex. Then

E = {q1x1 + · · ·+ qdxd | 0 ≤ qi < 1}︸ ︷︷ ︸
π

∩Zd

together with x1, . . . , xd generate the monoid
S ∩ Zd.

Every residue class in Zd/U , U = Zx1 + · · ·+ Zxd, has exactly one
representative in E.
Normaliz generates the points in E. They are candidates for the
Hilbert Basis and their number is given by the volume of the simplex

|E| = vol(S) = det(x1, . . . , xd).

The points in E are then reduced to a Hilbert Basis of S ∩ Zd.

Therefore vol(S) is a critical size for the runtime of Normaliz.
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Our Approach

If simplex S has big volume: decompose it into
smaller simplices, such that the sum of their
volumes decreases remarkably.

(Theoretically) Best choice for these points are the vertices of the
bottom B(S) (union of the bounded faces of conv((S ∩ Zd) \ {0}))

B(S)

(Practically) Computation of the whole bottom would equalize the
benefit from the small volume or even make it worse

Determine only some points from B(S) using

How? Compute points from the cone and use
them for a new triangulation.

2. Approximation

1. Integer Programming
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Integer Programming

Algorithm Bottom Points

Input: S = cone(x1, . . . , xd) simplex with
vol(S) ≥ Bound

Return: Points from B(S)
1: B,S ← ∅
2: store S into S
3: while S 6= ∅ do
4: let T = cone(y1, . . . , yd) be the first ele-

ment of S and delete it
5: compute a normal vector N on hyperplane

spanned by y1, . . . , yd
6: compute hyperplanes {H1, . . . , Hd} and

volume of T
7: if vol(T ) < Bound then continue
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Algorithm Bottom Points

Input: S = cone(x1, . . . , xd) simplex with
vol(S) ≥ Bound

Return: Points from B(S)
1: B,S ← ∅
2: store S into S
3: while S 6= ∅ do
4: let T = cone(y1, . . . , yd) be the first ele-

ment of S and delete it
5: compute a normal vector N on hyperplane

spanned by y1, . . . , yd
6: compute hyperplanes {H1, . . . , Hd} and

volume of T
7: if vol(T ) < Bound then continue

T

H1

H2

y1

y2



Integer Programming

Algorithm Bottom Points
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Integer Programming

Algorithm Bottom Points

3: while S 6= ∅ do
...

8: if IP (?) is solvable for T then
9: y ← optimal solution of (?)

10: store y into B
11: for all hyperplanes Hi of T do
12: if y /∈ Hi then
13: Ti ← cone(y1, . . . , yi−1, y, yi+1, . . . , yd)
14: store Ti into S
15: return B

B = {(1, 2), (1, 1)}

We triangulate the lower facets of conv(B ∪ {x1, . . . , xd}) and
evaluate this triangulation with the usual Normaliz algorithm.

min{NTx | x ∈ S ∩ Zd, x 6= 0, NTx < NTx1} (?)
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Results

hickerson-16 hickerson-18 knapsack 11 60

simplex vol 9.83 e 7 4.17 e 14 2.8 e 14

bottom vol 8.10 e 5 3.86 e 7 2.02 e 7

(1) (2) (1) (2) (1) (2)

our vol 3.93 e 6 3.93 e 6 5.47 e 7 8.42 e 7 2.39 e 7 9.36 e 9

factor 25 25 7.62 e 6 4.95 e 6 1.09 e 7 2.99 e 4

old time 2s >12d >8d

new time 0.5s 0.4s 46s 50s 5s 2m30s



Results

hickerson-16 hickerson-18 knapsack 11 60

simplex vol 9.83 e 7 4.17 e 14 2.8 e 14

bottom vol 8.10 e 5 3.86 e 7 2.02 e 7

(1) (2) (1) (2) (1) (2)

our vol 3.93 e 6 3.93 e 6 5.47 e 7 8.42 e 7 2.39 e 7 9.36 e 9

factor 25 25 7.62 e 6 4.95 e 6 1.09 e 7 2.99 e 4

old time 2s >12d >8d

new time 0.5s 0.4s 46s 50s 5s 2m30s

Partial Fourier-Motzkin:
no significant improvment, even in the non-simplicial case


