WHAT'S NEW IN NORMALIZ?

RICHARD SIEG

JOINT WITH WINFRIED BRUNS & Christof Söger

NORMALIZ

VERSION 3.2.0 JUST RELEASED! http://www.math.uos.de/normaliz

NORMALIZ

L... a lattice (subgroup of \mathbb{Z}^d)

- L... a lattice (subgroup of \mathbb{Z}^d)
- $C \dots$ a (rational polyhedral) cone

$$C = \operatorname{cone}(x_1, \dots, x_n) \subset \mathbb{R}^d$$

= $\{a_1 x_1 + \dots + a_n x_n \mid a_1, \dots, a_n \in \mathbb{R}_+\}$
= $\{x \in \mathbb{R}^n \mid Ax \ge 0\}$

with a generating system $x_1, \ldots, x_n \in \mathbb{Z}^d$.

- L... a lattice (subgroup of \mathbb{Z}^d)
- $C \dots$ a (rational polyhedral) cone

$$C = \operatorname{cone}(x_1, \dots, x_n) \subset \mathbb{R}^d$$

= $\{a_1 x_1 + \dots + a_n x_n \mid a_1, \dots, a_n \in \mathbb{R}_+\}$
= $\{x \in \mathbb{R}^n \mid Ax \ge 0\}$

with a generating system $x_1, \ldots, x_n \in \mathbb{Z}^d$. *C* simplicial: x_1, \ldots, x_n linearly independent

- L... a lattice (subgroup of \mathbb{Z}^d)
- $C \dots$ a (rational polyhedral) cone

$$C = \operatorname{cone}(x_1, \dots, x_n) \subset \mathbb{R}^d$$

= $\{a_1 x_1 + \dots + a_n x_n \mid a_1, \dots, a_n \in \mathbb{R}_+\}$
= $\{x \in \mathbb{R}^n \mid Ax \ge 0\}$

with a generating system $x_1, \ldots, x_n \in \mathbb{Z}^d$.

C simplicial: x_1, \ldots, x_n linearly independent

Theorem [Gordan's Lemma]

Let $C \subset \mathbb{R}^d$ be the cone generated by $x_1, \ldots, x_n \in \mathbb{Z}^d$. Then $C \cap L$ is an affine monoid M, i.e. a finitely generated submonoid of \mathbb{Z}^d .

Assume C pointed: $x, -x \in C \Rightarrow x = 0$.

Assume C pointed: $x, -x \in C \Rightarrow x = 0$.

 $x \in M = C \cap L, x \neq 0$ is irreducible:

$$x = y + z \Rightarrow y = 0 \text{ or } z = 0.$$

Assume C pointed: $x, -x \in C \Rightarrow x = 0$.

 $x \in M = C \cap L, x \neq 0$ is irreducible:

$$x = y + z \Rightarrow y = 0 \text{ or } z = 0.$$

Assume C pointed: $x, -x \in C \Rightarrow x = 0$.

 $x \in M = C \cap L, x \neq 0$ is irreducible:

$$x = y + z \Rightarrow y = 0 \text{ or } z = 0.$$

Theorem

There are only finitely many irreducible elements in $C \cap L$ and they form the unique minimal system of generators, the Hilbert Basis.

Second main task: Count lattice points by degree Hilbert (Ehrhart) function

$$H(M,k) = \#\{x \in M \mid \deg x = k\}$$

Hilbert (Ehrhart) series

$$H_M(t) = \sum_{k=0}^{\infty} H(M,k)t^k.$$

Second main task: Count lattice points by degree Hilbert (Ehrhart) function

$$H(M,k) = \#\{x \in M \mid \deg x = k\}$$

Hilbert (Ehrhart) series

$$H_M(t) = \sum_{k=0}^{\infty} H(M,k)t^k.$$

Theorem [Hilbert-Serre, Ehrhart]

★ $H_M(t)$ is a rational function. ★ H(M,k) is a quasi-polynomial for $k \ge 0$.

cross section

In the Normaliz algorithm:

* Preparatory coordinate transformation, s.t. the cone is full dimensional and $L = \mathbb{Z}^d$.

- * Preparatory coordinate transformation, s.t. the cone is full dimensional and $L = \mathbb{Z}^d$.
- Compute a triangulation of the cone, that is a face-to-face decomposition into simplicial cones. Simplicial cones are generated by linearly independent vectors.

- * Preparatory coordinate transformation, s.t. the cone is full dimensional and $L = \mathbb{Z}^d$.
- Compute a triangulation of the cone, that is a face-to-face decomposition into simplicial cones. Simplicial cones are generated by linearly independent vectors.
- Evaluate the simplicial cones in the triangulation independently from each other.

- * Preparatory coordinate transformation, s.t. the cone is full dimensional and $L = \mathbb{Z}^d$.
- Compute a triangulation of the cone, that is a face-to-face decomposition into simplicial cones. Simplicial cones are generated by linearly independent vectors.
- Evaluate the simplicial cones in the triangulation independently from each other.
- ★ Collect the data from the simplicial cones and process it globally.

- * Preparatory coordinate transformation, s.t. the cone is full dimensional and $L = \mathbb{Z}^d$.
- Compute a triangulation of the cone, that is a face-to-face decomposition into simplicial cones. Simplicial cones are generated by linearly independent vectors.
- Evaluate the simplicial cones in the triangulation independently from each other.
- Collect the data from the simplicial cones and process it globally.
- * Inverse coordinate transformation.

- * Preparatory coordinate transformation, s.t. the cone is full dimensional and $L = \mathbb{Z}^d$.
- Compute a triangulation of the cone, that is a face-to-face decomposition into simplicial cones. Simplicial cones are generated by linearly independent vectors.
- Evaluate the simplicial cones in the triangulation independently from each other.
- ★ Collect the data from the simplicial cones and process it globally.
- * Inverse coordinate transformation.

 $S = \operatorname{cone}(x_1, \dots, x_d) \text{ simplex. Then}$ $E = \underbrace{\{q_1 x_1 + \dots + q_d x_d \mid 0 \le q_i < 1\}}_{\pi} \cap \mathbb{Z}^d$

together with x_1, \ldots, x_d generate the monoid $S \cap \mathbb{Z}^d$.

$$S = \operatorname{cone}(x_1, \dots, x_d) \text{ simplex. Then}$$
$$E = \underbrace{\{q_1 x_1 + \dots + q_d x_d \mid 0 \le q_i < 1\}}_{\pi} \cap \mathbb{Z}^d$$

together with x_1, \ldots, x_d generate the monoid $S \cap \mathbb{Z}^d$.

Every residue class in \mathbb{Z}^d/U , $U = \mathbb{Z}x_1 + \cdots + \mathbb{Z}x_d$, has exactly one representative in E.

$$S = \operatorname{cone}(x_1, \dots, x_d) \text{ simplex. Then}$$
$$E = \underbrace{\{q_1 x_1 + \dots + q_d x_d \mid 0 \le q_i < 1\}}_{\pi} \cap \mathbb{Z}^d$$

together with x_1, \ldots, x_d generate the monoid $S \cap \mathbb{Z}^d$.

Every residue class in \mathbb{Z}^d/U , $U = \mathbb{Z}x_1 + \cdots + \mathbb{Z}x_d$, has exactly one representative in E.

Normaliz generates the points in E. They are candidates for the Hilbert Basis and their number is given by the volume of the simplex

$$|E| = \operatorname{vol}(S) = \det(x_1, \dots, x_d).$$

The points in E are then reduced to a Hilbert Basis of $S \cap \mathbb{Z}^d$.

$$S = \operatorname{cone}(x_1, \dots, x_d) \text{ simplex. Then}$$
$$E = \underbrace{\{q_1 x_1 + \dots + q_d x_d \mid 0 \le q_i < 1\}}_{\pi} \cap \mathbb{Z}^d$$

together with x_1, \ldots, x_d generate the monoid $S \cap \mathbb{Z}^d$.

Every residue class in \mathbb{Z}^d/U , $U = \mathbb{Z}x_1 + \cdots + \mathbb{Z}x_d$, has exactly one representative in E.

Normaliz generates the points in E. They are candidates for the Hilbert Basis and their number is given by the volume of the simplex

$$|E| = \operatorname{vol}(S) = \det(x_1, \dots, x_d).$$

The points in E are then reduced to a Hilbert Basis of $S \cap \mathbb{Z}^d$.

$$S = \operatorname{cone}(x_1, \dots, x_d) \text{ simplex. Then}$$
$$E = \underbrace{\{q_1 x_1 + \dots + q_d x_d \mid 0 \le q_i < 1\}}_{\pi} \cap \mathbb{Z}^d$$

together with x_1, \ldots, x_d generate the monoid $S \cap \mathbb{Z}^d$.

Every residue class in \mathbb{Z}^d/U , $U = \mathbb{Z}x_1 + \cdots + \mathbb{Z}x_d$, has exactly one representative in E.

Normaliz generates the points in E. They are candidates for the Hilbert Basis and their number is given by the volume of the simplex

$$|E| = \operatorname{vol}(S) = \det(x_1, \dots, x_d).$$

The points in E are then reduced to a Hilbert Basis of $S \cap \mathbb{Z}^d$.

Therefore vol(S) is a critical size for the runtime of Normaliz.

If simplex S has big volume: decompose it into smaller simplices, such that the sum of their volumes decreases remarkably.

If simplex S has big volume: decompose it into smaller simplices, such that the sum of their volumes decreases remarkably.

How? Compute points from the cone and use them for a new triangulation.

If simplex S has big volume: decompose it into smaller simplices, such that the sum of their volumes decreases remarkably.

How? Compute points from the cone and use them for a new triangulation.

(Theoretically) Best choice for these points are the vertices of the bottom B(S) (union of the bounded faces of $\operatorname{conv}((S \cap \mathbb{Z}^d) \setminus \{0\}))$

If simplex S has big volume: decompose it into smaller simplices, such that the sum of their volumes decreases remarkably.

How? Compute points from the cone and use them for a new triangulation.

(Theoretically) Best choice for these points are the vertices of the bottom B(S) (union of the bounded faces of $\operatorname{conv}((S \cap \mathbb{Z}^d) \setminus \{0\}))$ (Practically) Computation of the whole bottom would equalize the benefit from the small volume or even make it worse

If simplex S has big volume: decompose it into smaller simplices, such that the sum of their volumes decreases remarkably.

How? Compute points from the cone and use them for a new triangulation.

(Theoretically) Best choice for these points are the vertices of the bottom B(S) (union of the bounded faces of $\operatorname{conv}((S \cap \mathbb{Z}^d) \setminus \{0\}))$ (Practically) Computation of the whole bottom would equalize the benefit from the small volume or even make it worse

Determine only some points from ${\cal B}(S)$ using

1. INTEGER PROGRAMMING

2. Approximation

Integer Programming

 $S = \operatorname{cone}(x_1, \ldots, x_d)$ simplex in triangulation

Integer Programming

 $S = \operatorname{cone}(x_1, \ldots, x_d)$ simplex in triangulation GOAL Compute a point x that minimizes the sum of determinants: $\sum \det(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_d) = N^T x,$ i=1N ... normal vector on the hyperplane spanned by x_1,\ldots,x_d .

Integer Programming

 $S = \operatorname{cone}(x_1, \ldots, x_d)$ simplex in triangulation GOAL Compute a point x that minimizes the sum of determinants: $\sum \det(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_d) = N^T x,$ i=1N . . . normal vector on the hyperplane spanned by x_1, \ldots, x_d .

Solve the IP

$$\min\{N^T x \mid x \in S \cap \mathbb{Z}^d, x \neq 0, N^T x < N^T x_1\} \qquad (\star)$$

$S = \operatorname{cone}(x_1, \ldots, x_d)$ simplex in triangulation GOAL Compute a point x that minimizes the sum of determinants: $\sum \det(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_d) = N^T x,$ i=1N ... normal vector on the hyperplane spanned by x_1, \ldots, x_d . Solve the IP $\min\{N^T x \mid x \in S \cap \mathbb{Z}^d, x \neq 0, N^T x < N^T x_1\}$ (\star)

If problem can be solved: form a stellar subdivision with the solution.

 $S = \operatorname{cone}(x_1, \ldots, x_d)$ simplex in triangulation GOAL Compute a point x that minimizes the sum of determinants: $\sum \det(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_d) = N^T x,$ i=1N ... normal vector on the hyperplane spanned by x_1, \ldots, x_d . Solve the IP $\min\{N^T x \mid x \in S \cap \mathbb{Z}^d, x \neq 0, N^T x < N^T x_1\}$ (\star)

If problem can be solved: form a stellar subdivision with the solution.

$$\min\{N^T x \mid x \in S \cap \mathbb{Z}^d, x \neq 0, N^T x < N^T x_1\} \qquad (\star)$$

$$\min\{N^T x \mid x \in S \cap \mathbb{Z}^d, x \neq 0, N^T x < N^T x_1\} \qquad (\star)$$

$$\min\{N^T x \mid x \in S \cap \mathbb{Z}^d, x \neq 0, N^T x < N^T x_1\}$$
 (*)

$$\min\{N^T x \mid x \in S \cap \mathbb{Z}^d, x \neq 0, N^T x < N^T x_1\}$$
 (*)

$$\min\{N^T x \mid x \in S \cap \mathbb{Z}^d, x \neq 0, N^T x < N^T x_1\} \qquad (\star)$$

We triangulate the lower facets of $conv(\mathcal{B} \cup \{x_1, \ldots, x_d\})$ and evaluate this triangulation with the usual Normaliz algorithm.

* use SCIP (3.2.0) via its C++ interace

Gregor Hendel

- \star use SCIP (3.2.0) via its C++ interace
- \star parallelization with OpenMP
 - individual time limit
 - * individual feasibility bounds

- \star use SCIP (3.2.0) via its C++ interace
- ★ parallelization with OpenMP
 - individual time limit
 - * individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^7	4.17×10^{14}	2.8×10^{14}
bottom volume			
our volume			
improvement factor			
old runtime			
new runtime			

- \star use SCIP (3.2.0) via its C++ interace
- ★ parallelization with OpenMP
 - individual time limit
 - * individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^7	4.17×10^{14}	2.8×10^{14}
bottom volume	8.10×10^5	3.86×10^7	2.02×10^7
our volume			
improvement factor			
old runtime			
new runtime			

- \star use SCIP (3.2.0) via its C++ interace
- ★ parallelization with OpenMP
 - individual time limit
 - * individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^7	4.17×10^{14}	2.8×10^{14}
bottom volume	8.10×10^5	3.86×10^7	2.02×10^7
our volume	3.93×10^6	5.47×10^{7}	2.39×10^7
improvement factor			
old runtime			
new runtime			

- \star use SCIP (3.2.0) via its C++ interace
- ★ parallelization with OpenMP
 - individual time limit
 - * individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^7	4.17×10^{14}	2.8×10^{14}
bottom volume	$8.10 imes 10^5$	3.86×10^7	2.02×10^7
our volume	3.93×10^6	5.47×10^{7}	2.39×10^7
improvement factor	25	7.62×10^{6}	1.17×10^7
old runtime			
new runtime			

- \star use SCIP (3.2.0) via its C++ interace
- ★ parallelization with OpenMP
 - individual time limit
 - * individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^7	4.17×10^{14}	2.8×10^{14}
bottom volume	8.10×10^5	3.86×10^7	2.02×10^7
our volume	3.93×10^6	5.47×10^{7}	2.39×10^7
improvement factor	25	7.62×10^6	1.17×10^7
old runtime	2s	> 12 d	> 8d
new runtime			

- \star use SCIP (3.2.0) via its C++ interace
- ★ parallelization with OpenMP
 - individual time limit
 - * individual feasibility bounds

	hickerson-16	hickerson-18	knapsack_11_60
dimension	9	10	12
simplex volume	9.83×10^7	4.17×10^{14}	2.8×10^{14}
bottom volume	8.10×10^5	3.86×10^7	2.02×10^7
our volume	3.93×10^6	5.47×10^{7}	2.39×10^7
improvement factor	25	7.62×10^6	1.17×10^7
old runtime	2s	> 12 d	> 8d
new runtime	0.5s	36s	4s

1. Look at the cross section at level 1 of the (transformed) simplex.

1. Look at the cross section at level 1 of the (transformed) simplex.

2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_n = \{x_i = x_j\}$.

1. Look at the cross section at level 1 of the (transformed) simplex.

2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_n = \{x_i = x_j\}$.

1. Look at the cross section at level 1 of the (transformed) simplex.

2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_n = \{x_i = x_j\}$.

3. Detect the minimal face containing the point and collect its vertices (at most d).

1. Look at the cross section at level 1 of the (transformed) simplex.

2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_n = \{x_i = x_j\}$.

3. Detect the minimal face containing the point and collect its vertices (at most d).

4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.

1. Look at the cross section at level 1 of the (transformed) simplex.

2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_n = \{x_i = x_j\}$.

3. Detect the minimal face containing the point and collect its vertices (at most d).

4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.

1. Look at the cross section at level 1 of the (transformed) simplex.

2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_n = \{x_i = x_j\}$.

3. Detect the minimal face containing the point and collect its vertices (at most d).

4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.

1. Look at the cross section at level 1 of the (transformed) simplex.

2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_n = \{x_i = x_j\}$.

3. Detect the minimal face containing the point and collect its vertices (at most d).

4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.

1. Look at the cross section at level 1 of the (transformed) simplex.

2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_n = \{x_i = x_j\}$.

3. Detect the minimal face containing the point and collect its vertices (at most d).

4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.

 \Rightarrow list of points \mathcal{B} (bottom candidates)

1. Look at the cross section at level 1 of the (transformed) simplex.

2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_n = \{x_i = x_j\}$.

3. Detect the minimal face containing the point and collect its vertices (at most d).

4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.

 \Rightarrow list of points \mathcal{B} (bottom candidates)

Choose a grading minimizing point from \mathcal{B} and continue as before.

1. Look at the cross section at level 1 of the (transformed) simplex.

2. For each extreme ray/point, triangulate the lattice cube around it using the hyperplane arrangement $\mathcal{A}_n = \{x_i = x_j\}$.

3. Detect the minimal face containing the point and collect its vertices (at most d).

4. Create a candidate list of the new cone, intersect it with the original cone and do local reduction.

 \Rightarrow list of points \mathcal{B} (bottom candidates)

Choose a grading minimizing point from \mathcal{B} and continue as before.

Partial Fourier-Motzkin Elimination

٠

Partial Fourier-Motzkin Elimination

٠

Results

	hickerson-16		hickerson-18		knapsack_11_60	
simplex vol	$9.83\mathrm{e}7$		$4.17\mathrm{e}14$		$2.8 \mathrm{e} 14$	
bottom vol	$8.10\mathrm{e}5$		$3.86\mathrm{e}7$		$2.02\mathrm{e}7$	
	(1)	(2)	(1)	(2)	(1)	(2)
our vol	$3.93 \mathrm{e} 6$	$3.93 \mathrm{e} 6$	$5.47\mathrm{e}7$	$8.42\mathrm{e}7$	$2.39\mathrm{e}7$	9.36 e 9
factor	25	25	$7.62 \mathrm{e} 6$	$4.95\mathrm{e}6$	$1.09 \mathrm{e}7$	$2.99\mathrm{e}4$
old time	2s		>12d		>8d	
new time	0.5s	0.4s	46s	50s	5s	2m30s

Results

	hickerson-16		hickerson-18		knapsack_11_60	
simplex vol	$9.83\mathrm{e}7$		$4.17\mathrm{e}14$		$2.8 \mathrm{e} 14$	
bottom vol	$8.10\mathrm{e}5$		$3.86\mathrm{e}7$		2.02 e 7	
	(1)	(2)	(1)	(2)	(1)	(2)
our vol	$3.93 \mathrm{e} 6$	$3.93 \mathrm{e} 6$	$5.47\mathrm{e}7$	$8.42\mathrm{e}7$	$2.39\mathrm{e}7$	9.36 e 9
factor	25	25	$7.62 \mathrm{e} 6$	$4.95\mathrm{e}6$	$1.09 \mathrm{e}7$	$2.99\mathrm{e}4$
old time	2s		>12d		>8d	
new time	0.5s	0.4s	46s	50s	5s	2m30s

Partial Fourier-Motzkin:

no significant improvment, even in the non-simplicial case