
USING POLYMAKE TO CHECK WHETHER A MATROID IS

1-FLOWING

GORDON ROYLE

Abstract. Description of how to use polymake to check whether a
matroid is 1-flowing.

1. Introduction

A binary matroid M is said to be {e}-flowing if for every element e ∈ E(M),
a certain polytope defined using the circuits of M that pass through e has
integral vertices. A matroid is called 1-flowing if it is {e}-flowing for every
element of E(M). In this tutorial-style note, we’ll work through an example,
namely the matroid AG(3, 2) and demonstrate the computational process to
checking whether or not it is 1-flowing, using the computer system polymake.

The binary matroid AG(3, 2) consists of the binary vectors in PG(3, 2) which
lie off a hyperplane (i.e. all the affine points) and so can easily be seen to
be represented by the matrix consisting of every column vector with first
coordinate equal to one.

M =

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

Label the 8 matroid elements (that is, matrix columns) 0, 1, . . ., 7 in the
natural order. Then AG(3, 2) has 14 circuits, all of size 4, as follows:

0123 0145 0167 0246 0257 0347 0356
1247 1256 1346 1357 2345 2367 4567

The automorphism group of AG(3, 2) is transitive on the ground set, and
so to check whether the matrix is 1-flowing we only need to test that it
is {0}-flowing. Each circuit containing 0 yields one constraint on a set of
variables identified with E(M)\{0}, which we will call {x1, x2, . . . , x7} with
the natural correspondence. Each of the circuit constraints is that the sum

1

2 GORDON ROYLE

Circuit Constraint
0123 x1 + x2 + x3 ≥ 1
0145 x1 + x4 + x5 ≥ 1
0167 x1 + x6 + x7 ≥ 1
0246 x2 + x4 + x6 ≥ 1
0257 x2 + x5 + x7 ≥ 1
0347 x3 + x4 + x7 ≥ 1
0356 x3 + x5 + x6 ≥ 1

Table 1. Circuit-constraints for checking if AG(3, 2) is {0}-flowing

of the corresponding variables is at least 1. Thus we get the 7 constraints
shown in Table 1.

In addition to these constraints, each variable must be non-negative, and so
we add xi ≥ 0 to the list of constraints. These gives us a total of fourteen
constraints, each determining a half-space in R7, and the intersection of
these half-spaces is an unbounded polytope; an expression for a polytope in
this fashion is called an H-representation of the polytope (H for half-space,
I suppose).

A polytope can also be described by its vertices or extreme points and, if it
is unbounded, its rays in addition. The matroid is {e}-flowing if the poly-
tope described above has integral vertices, that is, its vertices have integer
coordinates. The description of a polytope by its vertices (and rays) is called
its V -representation and so the task is to convert the H-representation into
the V -representation and check integrality.

A program for this purpose, written by Komei Fukuda, is implemented
within the computer system polymake with is a computer algebra system
for polytopes and associated objects.

2. The Computation

The basic process is straightforward:

(1) Construct a polytope in polymake using the H-representation, and
(2) Ask polymake to return the V -representation.

In practice, it is almost as straightforward, with just some possible teething
troubles in mastering the syntax of polymake. A constraint in polymake of
the form

aTx ≥ b

USING POLYMAKE TO CHECK WHETHER A MATROID IS 1-FLOWING 3

Circuit Constraint polymake vector
0123 x1 + x2 + x3 ≥ 1 [-1,1,1,1,0,0,0,0]
0145 x1 + x4 + x5 ≥ 1 [-1,1,0,0,1,1,0,0]
0167 x1 + x6 + x7 ≥ 1 [-1,1,0,0,0,0,1,1]
0246 x2 + x4 + x6 ≥ 1 [-1,0,1,0,1,0,1,0]
0257 x2 + x5 + x7 ≥ 1 [-1,0,1,0,0,1,0,1]
0347 x3 + x4 + x7 ≥ 1 [-1,0,0,1,1,0,0,1]
0356 x3 + x5 + x6 ≥ 1 [-1,0,0,1,0,1,1,0]

Table 2. Circuit-constraints for checking if AG(3, 2) is {0}-flowing

(where a is a (column) vector of coefficients, x the vector of variables and b
a vector of constants) must first be re-expressed in the form

−b + aTx ≥ 0

and then the constant term and coefficients in this expression gathered into
one row vector in this order, yielding the vector

[b, a1, a2, . . . , an].

Table 2 shows the circuit constraints expressed in polymake form.

After installing and starting up polymake (or using the handy online “poly-
make in a Box” tool found at http://polymake.org/doku.php/boxdoc) we
can start to enter commands at the polymake prompt (which by default is
the string polytope > and a number).

polytope > $circuit_constraints = new Matrix([

polytope (2)> [-1,1,1,1,0,0,0,0],

polytope (3)> [-1,1,0,0,1,1,0,0],

polytope (4)> [-1,1,0,0,0,0,1,1],

polytope (5)> [-1,0,1,0,1,0,1,0],

polytope (6)> [-1,0,1,0,0,1,0,1],

polytope (7)> [-1,0,0,1,1,0,0,1],

polytope (8)> [-1,0,0,1,0,1,1,0]]);

We also need the constraints for non-negativity, but these can be constructed
programatically rather than manually because the appropriate matrix is just
a zero column vector adjacent to an identify matrix,

polytope > $nonneg_constraints = zero_vector(7) | unit_matrix(7);

and the set of all constraints is obtained from the union of both matrices.

4 GORDON ROYLE

polytope > $all_ineq = $circuit_constraints / $nonneg_constraints;

Let’s just check that all is in order

polytope > print_constraints($all_ineq);

0: x1 + x2 + x3 >= 1

1: x1 + x4 + x5 >= 1

2: x1 + x6 + x7 >= 1

3: x2 + x4 + x6 >= 1

4: x2 + x5 + x7 >= 1

5: x3 + x4 + x7 >= 1

6: x3 + x5 + x6 >= 1

7: x1 >= 0

8: x2 >= 0

9: x3 >= 0

10: x4 >= 0

11: x5 >= 0

12: x6 >= 0

13: x7 >= 0

Finally we can create the polytope and ask for its vertices!

polytope > $p = new Polytope<Rational>(INEQUALITIES=>$all_ineq);

polytope > print $p->VERTICES;

polymake: used package cddlib

Implementation of the double description method of Motzkin et al.

Copyright by Komei Fukuda.

http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0

1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1

1 1/3 1/3 1/3 1/3 1/3 1/3 1/3

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

USING POLYMAKE TO CHECK WHETHER A MATROID IS 1-FLOWING 5

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Notice that each row listing the vertices has eight coordinates, rather than
seven. This is because our 7-dimensional space has been embedded as the
plane x0 = 1 in an 8-dimensional space in order to accommodate vertices
and rays in a uniform manner. The rows with first coordinate equal to 1 are
the vertices, while the others are the rays.

We immediately see that this matroid is not {0}-flowing because the point

(1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3)

is a vertex of the associated polytope.

3. Seymour’s Conjecture

The fact that AG(3, 2) is not 1-flowing has of course long been known. And
because the property of being 1-flowing is closed under taking minors, this
means that no binary matroid with an AG(3, 2) minor is 1-flowing either.

There are two other known minor-minimal matroids with no AG(3, 2)-minor
that are not 1-flowing; these are the dual pair T11 and T ∗

11. Seymour con-
jectured that this is the complete set of excluded minors.

3.1. Conjecture. (Seymour) A binary matroid is 1-flowing if and only if it
has no AG(3, 2), T11 or T ∗

11 minor.

