USING POLYMAKE TO CHECK WHETHER A MATROID IS 1-FLOWING

GORDON ROYLE

Abstract

Description of how to use polymake to check whether a matroid is 1-flowing.

1. Introduction

A binary matroid M is said to be $\{e\}$-flowing if for every element $e \in E(M)$, a certain polytope defined using the circuits of M that pass through e has integral vertices. A matroid is called 1-flowing if it is $\{e\}$-flowing for every element of $E(M)$. In this tutorial-style note, we'll work through an example, namely the matroid $A G(3,2)$ and demonstrate the computational process to checking whether or not it is 1-flowing, using the computer system polymake.

The binary matroid $A G(3,2)$ consists of the binary vectors in $P G(3,2)$ which lie off a hyperplane (i.e. all the affine points) and so can easily be seen to be represented by the matrix consisting of every column vector with first coordinate equal to one.

$$
M=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

Label the 8 matroid elements (that is, matrix columns) $0,1, \ldots, 7$ in the natural order. Then $A G(3,2)$ has 14 circuits, all of size 4 , as follows:

0123	0145	0167	0246	0257	0347	0356
1247	1256	1346	1357	2345	2367	4567

The automorphism group of $A G(3,2)$ is transitive on the ground set, and so to check whether the matrix is 1-flowing we only need to test that it is $\{0\}$-flowing. Each circuit containing 0 yields one constraint on a set of variables identified with $E(M) \backslash\{0\}$, which we will call $\left\{x_{1}, x_{2}, \ldots, x_{7}\right\}$ with the natural correspondence. Each of the circuit constraints is that the sum

Circuit	Constraint
0123	$x_{1}+x_{2}+x_{3} \geq 1$
0145	$x_{1}+x_{4}+x_{5} \geq 1$
0167	$x_{1}+x_{6}+x_{7} \geq 1$
0246	$x_{2}+x_{4}+x_{6} \geq 1$
0257	$x_{2}+x_{5}+x_{7} \geq 1$
0347	$x_{3}+x_{4}+x_{7} \geq 1$
0356	$x_{3}+x_{5}+x_{6} \geq 1$

Table 1. Circuit-constraints for checking if $A G(3,2)$ is $\{0\}$-flowing
of the corresponding variables is at least 1 . Thus we get the 7 constraints shown in Table 1.

In addition to these constraints, each variable must be non-negative, and so we add $x_{i} \geq 0$ to the list of constraints. These gives us a total of fourteen constraints, each determining a half-space in \mathbb{R}^{7}, and the intersection of these half-spaces is an unbounded polytope; an expression for a polytope in this fashion is called an H-representation of the polytope (H for half-space, I suppose).

A polytope can also be described by its vertices or extreme points and, if it is unbounded, its rays in addition. The matroid is $\{e\}$-flowing if the polytope described above has integral vertices, that is, its vertices have integer coordinates. The description of a polytope by its vertices (and rays) is called its V-representation and so the task is to convert the H-representation into the V-representation and check integrality.

A program for this purpose, written by Komei Fukuda, is implemented within the computer system polymake with is a computer algebra system for polytopes and associated objects.

2. The Computation

The basic process is straightforward:
(1) Construct a polytope in polymake using the H-representation, and
(2) Ask polymake to return the V-representation.

In practice, it is almost as straightforward, with just some possible teething troubles in mastering the syntax of polymake. A constraint in polymake of the form

$$
a^{T} x \geq b
$$

Circuit	Constraint	polymake vector
0123	$x_{1}+x_{2}+x_{3} \geq 1$	$[-1,1,1,1,0,0,0,0]$
0145	$x_{1}+x_{4}+x_{5} \geq 1$	$[-1,1,0,0,1,1,0,0]$
0167	$x_{1}+x_{6}+x_{7} \geq 1$	$[-1,1,0,0,0,0,1,1]$
0246	$x_{2}+x_{4}+x_{6} \geq 1$	$[-1,0,1,0,1,0,1,0]$
0257	$x_{2}+x_{5}+x_{7} \geq 1$	$[-1,0,1,0,0,1,0,1]$
0347	$x_{3}+x_{4}+x_{7} \geq 1$	$[-1,0,0,1,1,0,0,1]$
0356	$x_{3}+x_{5}+x_{6} \geq 1$	$[-1,0,0,1,0,1,1,0]$

Table 2. Circuit-constraints for checking if $A G(3,2)$ is $\{0\}$-flowing
(where a is a (column) vector of coefficients, x the vector of variables and b a vector of constants) must first be re-expressed in the form

$$
-b+a^{T} x \geq 0
$$

and then the constant term and coefficients in this expression gathered into one row vector in this order, yielding the vector

$$
\left[b, a_{1}, a_{2}, \ldots, a_{n}\right] .
$$

Table 2 shows the circuit constraints expressed in polymake form.
After installing and starting up polymake (or using the handy online "polymake in a Box" tool found at http://polymake.org/doku.php/boxdoc) we can start to enter commands at the polymake prompt (which by default is the string polytope > and a number).

```
polytope > $circuit_constraints = new Matrix([
polytope (2)> [-1,1,1,1,0,0,0,0],
polytope (3)> [-1,1,0,0,1,1,0,0],
polytope (4)> [-1,1,0,0,0,0,1,1],
polytope (5)> [-1,0,1,0,1,0,1,0],
polytope (6)> [-1,0,1,0,0,1,0,1],
polytope (7)> [-1,0,0,1,1,0,0,1],
polytope (8)> [-1,0,0,1,0,1,1,0]]);
```

We also need the constraints for non-negativity, but these can be constructed programatically rather than manually because the appropriate matrix is just a zero column vector adjacent to an identify matrix,
polytope > \$nonneg_constraints = zero_vector(7) | unit_matrix(7);
and the set of all constraints is obtained from the union of both matrices.
polytope > \$all_ineq = \$circuit_constraints / \$nonneg_constraints;

Let's just check that all is in order

```
polytope > print_constraints($all_ineq);
0: x1 + x2 + x3 >= 1
1: x1 + x4 + x5 >= 1
2: x1 + x6 + x7 >= 1
3: x2 + x4 + x6 >= 1
4: x2 + x5 + x7 >= 1
5: x3 + x4 + x7 >= 1
6: x3 + x5 + x6 >= 1
7: x1 >= 0
8: x2 >= 0
9: x3 >= 0
10: x4 >= 0
11: x5 >= 0
12: x6 >= 0
13: x7 >= 0
```

Finally we can create the polytope and ask for its vertices!

```
polytope > $p = new Polytope<Rational>(INEQUALITIES=>$all_ineq);
polytope > print $p->VERTICES;
polymake: used package cddlib
    Implementation of the double description method of Motzkin et al.
    Copyright by Komei Fukuda.
    http://www.ifor.math.ethz.ch/~}fukuda/cdd_home/cdd.html
100011 1 0 0 1
100 1 0 1 1 0
101 0 0 1 0 1 0
1 0 1 0 0 1 0 1
```



```
111110000
110001100
110000011
01000000
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
00001000
```

```
0000001100
0}0000001
00000001
```

Notice that each row listing the vertices has eight coordinates, rather than seven. This is because our 7-dimensional space has been embedded as the plane $x_{0}=1$ in an 8 -dimensional space in order to accommodate vertices and rays in a uniform manner. The rows with first coordinate equal to 1 are the vertices, while the others are the rays.

We immediately see that this matroid is not $\{0\}$-flowing because the point

$$
(1 / 3,1 / 3,1 / 3,1 / 3,1 / 3,1 / 3,1 / 3)
$$

is a vertex of the associated polytope.

3. Seymour's Conjecture

The fact that $A G(3,2)$ is not 1-flowing has of course long been known. And because the property of being 1 -flowing is closed under taking minors, this means that no binary matroid with an $A G(3,2)$ minor is 1-flowing either.

There are two other known minor-minimal matroids with no $A G(3,2)$-minor that are not 1-flowing; these are the dual pair T_{11} and T_{11}^{*}. Seymour conjectured that this is the complete set of excluded minors.
3.1. Conjecture. (Seymour) A binary matroid is 1 -flowing if and only if it has no $A G(3,2), T_{11}$ or T_{11}^{*} minor.

