
Julia, not Juliet
an introduction to the programming language, not Shakespeare

Kamillo Ferry

Technische Universität Berlin

July 3rd, 2024
OSCAR Boot Camp

Kamillo Ferry Julia introduction July 3rd, 2024 1 / 24



What is Julia?

Work on Julia began in 2009.

The syntax is being considered stable since 2018.

‘Julia was designed for high performance [...] and automatically
compiles to native code [...]’,

meaning, while being compiled, we also get some advantages of a
dynamic language.

Kamillo Ferry Julia introduction July 3rd, 2024 2 / 24



How to get Julia onto your device?

Most Unix-like OSs:
curl -fsSL https://install.julialang.org | sh as per the

instructions on the official Julia page (julialang.org).

Windows:
Possible. But you will want Julia on Linux here, so rather take the
Windows Subsystem for Linux route. (If you need help, ask me
afterwards.)

Kamillo Ferry Julia introduction July 3rd, 2024 3 / 24

julialang.org


How to get Julia actually working?

In general: You want to have a working and recent compiler.

Debian-based:
sudo apt-get install build-essential

Fedora:
sudo dnf install gcc-c++ make

macOS:
xcode-select --install

Kamillo Ferry Julia introduction July 3rd, 2024 4 / 24



Time to see Julia in action!

Kamillo Ferry Julia introduction July 3rd, 2024 5 / 24



What is so nice about Julia (besides OSCAR)?

It’s interactive!

Broadcasting is very nice in Julia

Multiple dispatch

Kamillo Ferry Julia introduction July 3rd, 2024 6 / 24



A first function in Julia

Writing a function that operates on vectors:

function add(x::Vector , y:: Vector)

n = length(x)

z = Vector ()

for i in 1:n

push!(z, x[i]+y[i])

end

return z

end

Kamillo Ferry Julia introduction July 3rd, 2024 7 / 24



A first function, second take

Taking advantage of broadcasting:

add(x, y) = x+y

add(x::Vector , y:: Vector) = add.(x,y)

Kamillo Ferry Julia introduction July 3rd, 2024 8 / 24



A first function, last take

x .+ y // broadcasting

x + y // Vector -defined operator

Kamillo Ferry Julia introduction July 3rd, 2024 9 / 24



What is so nice about Julia (besides OSCAR)?

It’s interactive!

Broadcasting is very nice in Julia

Multiple dispatch

Kamillo Ferry Julia introduction July 3rd, 2024 10 / 24



A first function, second take

Taking advantage of broadcasting:

add(x, y) = x+y

add(x::Vector , y:: Vector) = add.(x,y)

Kamillo Ferry Julia introduction July 3rd, 2024 11 / 24



Multiple dispatch, extended

Extending add and making it more polymorphic:

add(x,y) = x+y

add(x::Vector , y:: Vector) = add.(x,y)

Now we extend add somewhere else:

add(P:: Polyhedron , Q:: Polyhedron) = minkowski_sum(P,Q)

There’s also a parameter template system:

*(c::T, A::S) where {T <: RingElem ,

S <: MatElem{T}}

Kamillo Ferry Julia introduction July 3rd, 2024 12 / 24



How to navigate around all that?

Using the help prompt mode

methodswith(::Type; supertypes=true)

@less and @which

Tab completion with some arguments filled in already

Kamillo Ferry Julia introduction July 3rd, 2024 13 / 24



Conditional branching

function do_branching(n:: Integer)

if n%2 == 0

return n/2

elseif n%2 == 1

return 3*n + 1

end

end

Kamillo Ferry Julia introduction July 3rd, 2024 14 / 24



Conditional branching

function do_branching(n:: Integer)

if n%2 == 0

return n/2

else

return 3*n + 1

end

end

Kamillo Ferry Julia introduction July 3rd, 2024 15 / 24



Conditional branching

function do_branching(n)

if n%2 == 0

return n/2

else

return 3*n + 1

end

end

Kamillo Ferry Julia introduction July 3rd, 2024 16 / 24



Unbounded loops

function euclid(x,y)

while x!=y

if x > y

x -= y

else

y -= x

end

end

return x

end

Kamillo Ferry Julia introduction July 3rd, 2024 17 / 24



Working with more complex data structure

Suppose we want to implement a data structure in Julia that describes a
permutation.

The permutation should be specified by the images.

A permutation σ should work with function-call syntax, i. e. we can
write σ(i) and it works.

Composition of permutations should work.

Kamillo Ferry Julia introduction July 3rd, 2024 18 / 24



A problem in elimination theory

Suppose we have the polynomial map given by

φ : k → k3,

x 7→ ((1− x)2, 2x(1− x), x2).

How do we calculate the relations of imφ in OSCAR?

Kamillo Ferry Julia introduction July 3rd, 2024 19 / 24



Complete independence models

Suppose we have two finite random variables X1,X2 with values in
{1, . . . , n1} and {1, . . . , n2} each.

Then, the random vector (X1,X2) can be characterized by a
stochastic matrix P ∈ Rn1×n2 .

We know that X1 ⊥⊥ X2 if all 2× 2-minors of P vanish.

How to check this in OSCAR?

Kamillo Ferry Julia introduction July 3rd, 2024 20 / 24



Beyond base Julia

This means we want to install packages.

There’s two ways to do this, e. g. for OSCAR
1 Enter using Pkg; Pkg.add("OSCAR") into the Julia REPL.

2 Hit ] on an empty line and enter add OSCAR .

Kamillo Ferry Julia introduction July 3rd, 2024 21 / 24



Editors

There are a plenty of. Emacs, Vim and VS Code are officially supported.

Emacs: julia-emacs together with julia-repl and eshell

Vim: julia-vim together with vim-slime and tmux

VS Code: official Julia extension for VS Code

With the above, you get syntax highlighting and can send code from
the editor directly to a REPL

Kamillo Ferry Julia introduction July 3rd, 2024 22 / 24



Running code from disk

Maybe typing code directly into the terminal is not always
comfortable.

Run a local file like a script: julia file.jl

Run a file inside a Julia session: include("file.jl")

Kamillo Ferry Julia introduction July 3rd, 2024 23 / 24



Notebooks

Beyond plain text editors, there are even two options for interactive
notebooks, Pluto and Jupyter.

Getting either is as easy as running ]add Pluto or ]add IJulia

Running Pluto: using Pluto; Pluto.run()

Running Jupyter: using IJulia; notebook()

Now go explore the world with Julia and OSCAR!

Kamillo Ferry Julia introduction July 3rd, 2024 24 / 24


	What is Julia?
	Diving into Julia
	How does Julia look like?
	Julia in context
	Using OSCAR
	Getting comfy with the Julia ecosystem

