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What is Julia?

Work on Julia began in 2009.

The syntax is being considered stable since 2018.

‘Julia was designed for high performance [...] and automatically
compiles to native code [...]’,

meaning, while being compiled, we also get some advantages of a
dynamic language.
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How to get Julia onto your device?

Most Unix-like OSs:
curl -fsSL https://install.julialang.org | sh as per the

instructions on the official Julia page (julialang.org).

Windows:
Possible. But you will want Julia on Linux here, so rather take the
Windows Subsystem for Linux route. (If you need help, ask me
afterwards.)
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How to get Julia actually working?

In general: You want to have a working and recent compiler.

Debian-based:
sudo apt-get install build-essential

Fedora:
sudo dnf install gcc-c++ make

macOS:
xcode-select --install
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Time to see Julia in action!
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What is so nice about Julia (besides OSCAR)?

It’s interactive!

Broadcasting is very nice in Julia

Multiple dispatch
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A first function in Julia

Writing a function that operates on vectors:

function add(x::Vector , y:: Vector)

n = length(x)

z = Vector ()

for i in 1:n

push!(z, x[i]+y[i])

end

return z

end
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A first function, second take

Taking advantage of broadcasting:

add(x, y) = x+y

add(x::Vector , y:: Vector) = add.(x,y)
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A first function, last take

x .+ y // broadcasting

x + y // Vector -defined operator
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Multiple dispatch, extended

Extending add and making it more polymorphic:

add(x,y) = x+y

add(x::Vector , y:: Vector) = add.(x,y)

Now we extend add somewhere else:

add(P:: Polyhedron , Q:: Polyhedron) = minkowski_sum(P,Q)

There’s also a parameter template system:

*(c::T, A::S) where {T <: RingElem ,

S <: MatElem{T}}
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How to navigate around all that?

Using the help prompt mode

methodswith(::Type; supertypes=true)

@less and @which

Tab completion with some arguments filled in already
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Conditional branching

function do_branching(n:: Integer)

if n%2 == 0

return n/2

elseif n%2 == 1

return 3*n + 1

end

end
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Unbounded loops

function euclid(x,y)

while x!=y

if x > y

x -= y

else

y -= x

end

end

return x

end
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Working with more complex data structure

Suppose we want to implement a data structure in Julia that describes a
permutation.

The permutation should be specified by the images.

A permutation σ should work with function-call syntax, i. e. we can
write σ(i) and it works.

Composition of permutations should work.
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A problem in elimination theory

Suppose we have the polynomial map given by

φ : k → k3,

x 7→ ((1− x)2, 2x(1− x), x2).

How do we calculate the relations of imφ in OSCAR?
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Complete independence models

Suppose we have two finite random variables X1,X2 with values in
{1, . . . , n1} and {1, . . . , n2} each.

Then, the random vector (X1,X2) can be characterized by a
stochastic matrix P ∈ Rn1×n2 .

We know that X1 ⊥⊥ X2 if all 2× 2-minors of P vanish.

How to check this in OSCAR?
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Beyond base Julia

This means we want to install packages.

There’s two ways to do this, e. g. for OSCAR
1 Enter using Pkg; Pkg.add("OSCAR") into the Julia REPL.

2 Hit ] on an empty line and enter add OSCAR .
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Editors

There are a plenty of. Emacs, Vim and VS Code are officially supported.

Emacs: julia-emacs together with julia-repl and eshell

Vim: julia-vim together with vim-slime and tmux

VS Code: official Julia extension for VS Code

With the above, you get syntax highlighting and can send code from
the editor directly to a REPL
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Running code from disk

Maybe typing code directly into the terminal is not always
comfortable.

Run a local file like a script: julia file.jl

Run a file inside a Julia session: include("file.jl")
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Notebooks

Beyond plain text editors, there are even two options for interactive
notebooks, Pluto and Jupyter.

Getting either is as easy as running ]add Pluto or ]add IJulia

Running Pluto: using Pluto; Pluto.run()

Running Jupyter: using IJulia; notebook()

Now go explore the world with Julia and OSCAR!
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