Fano Polytopes with Many Vertices

Andreas Paffenholz

joint with
Benjamin Assarf and Michael Joswig
lattice polytope $P : \iff P = \text{conv}(v_1, \ldots, v_n) \subset \mathbb{R}^d$
for lattice points $v_1, \ldots, v_n \in \mathbb{Z}^d$.

Lattice Polytopes
Lattice Polytopes

- A lattice polytope P is defined as:
 \[P = \text{conv}(v_1, \ldots, v_n) \subset \mathbb{R}^d \]
 for lattice points $v_1, \ldots, v_n \in \mathbb{Z}^d$.

- P is a Fano polytope if:
 - 0 is in the interior of P
 - v_i is primitive, $1 \leq i \leq n$
Toric Fano Varieties

- face fan Σ of P: fan with cones $\{ \lambda v \mid \lambda \geq 0, v \in F \}$ for faces F of P
Toric Fano Varieties

- face fan Σ of P: fan with cones $\{ \lambda v \mid \lambda \geq 0, v \in F \}$ for faces F of P
- X Fano variety: \iff X normal projective variety, anticanonical divisor K_X \mathbb{Q}-Cartier and ample
Toric Fano Varieties

- **face fan Σ of P**: fan with cones $\{ \lambda v \mid \lambda \geq 0, v \in F \}$ for faces F of P
- **X Fano variety**: X normal projective variety, anticanonical divisor K_X \mathbb{Q}-Cartier and ample

- **Σ complete polyhedral fan** (\iff cones cover \mathbb{R}^d)
 - $\implies X = X_\Sigma$ associated toric variety
Toric Fano Varieties

- **face fan** Σ of P: fan with cones $\{ \lambda v \mid \lambda \geq 0, v \in F \}$ for faces F of P

- X Fano variety: X normal projective variety, anticanonical divisor K_X \mathbb{Q}-Cartier and ample

- Σ complete polyhedral fan ($: \iff$ cones cover \mathbb{R}^d)
 - $\rightarrow X = X_\Sigma$ associated toric variety
 - $\rightarrow X$ projective: \iff
 Σ is face fan of some polytope
Toric Fano Varieties

- **face fan** Σ of P: fan with cones $\{ \lambda v \mid \lambda \geq 0, v \in F \}$ for faces F of P

- X Fano variety \iff X normal projective variety, anticanonical divisor K_X \mathbb{Q}-Cartier and ample

- Σ complete polyhedral fan $:\iff$ cones cover \mathbb{R}^d

 $\implies X = X_\Sigma$ associated toric variety

 $\implies X$ projective $:\iff$

 Σ is face fan of some polytope

- v_1, \ldots, v_n primitive generators of rays of Σ

 $\implies P := \text{conv}(v_1, \ldots, v_n)$ lattice polytope
Toric Fano Varieties

- face fan Σ of P: fan with cones $\{ \lambda \mathbf{v} \mid \lambda \geq 0, \mathbf{v} \in F \}$ for faces F of P
- X Fano variety: X normal projective variety, anticanonical divisor K_X \mathbb{Q}-Cartier and ample

- Σ complete polyhedral fan (\iff cones cover \mathbb{R}^d)
 - $X = X_\Sigma$ associated toric variety
 - X projective: $\iff \Sigma$ is face fan of some polytope

- $\mathbf{v}_1, \ldots, \mathbf{v}_n$ primitive generators of rays of Σ
 - $P := \text{conv}(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ lattice polytope
 - X Fano: \iff face fan of P is Σ
Toric Fano Varieties

- face fan Σ of P : fan with cones $\{ \lambda v \mid \lambda \geq 0, v \in F \}$ for faces F of P
- X Fano variety: \iff X normal projective variety, anticanonical divisor K_X \mathbb{Q}-Cartier and ample

- Σ complete polyhedral fan (\iff cones cover \mathbb{R}^d)
 - $X = X_\Sigma$ associated toric variety
 - X projective : \iff Σ is face fan of some polytope
- v_1, \ldots, v_n primitive generators of rays of Σ
 - $P := \text{conv}(v_1, \ldots, v_n)$ lattice polytope
 - X Fano : \iff face fan of P is Σ
Toric Dictionary

- X toric Fano variety with associated Fano polytope P

X \(\mathbb{Q}\)-factorial
Weil divisors are \(\mathbb{Q}\)-Cartier

P simplicial
all faces are simplices
\\(\mathcal{X} \) toric Fano variety with associated Fano polytope \(\mathcal{P} \)

- \(\mathcal{X} \) \(\mathbb{Q} \)-factorial
 - Weil divisors are \(\mathbb{Q} \)-Cartier
- \(\mathcal{X} \) has at most terminal singularities

\(\mathcal{P} \) simplicial
- all faces are simplices

\(\mathcal{P} \) terminal
- \(\mathcal{P} \cap \mathbb{Z}^d = \text{Vert}(\mathcal{P}) \cup \{0\} \)
X toric Fano variety with associated Fano polytope P

X Q-factorial

- Weil divisors are Q-Cartier

X has at most

- terminal singularities

P simplicial

- all faces are simplices

P terminal

- $P \cap \mathbb{Z}^d = \text{Vert}(P) \cup \{0\}$

X Gorenstein

- K_X divisor is Cartier

P reflexive

- polar is lattice polytope

- polar polytope $P := \{ x | \langle x, v \rangle \leq 1, v \in \text{Vert}(P) \}$
Toric Dictionary

- X toric Fano variety with associated Fano polytope P
 - X \mathbb{Q}-factorial
 - Weil divisors are \mathbb{Q}-Cartier
 - X has at most terminal singularities
 - P simplicial
 - all faces are simplices
 - P terminal
 - $P \cap \mathbb{Z}^d = \text{Vert}(P) \cup \{0\}$
 - X Gorenstein
 - K_X divisor is Cartier
 - P reflexive
 - polar is lattice polytope
 - X non-singular variety
 - P smooth
 - vertices of each facet are lattice basis
Theorem (Hensley; Lagarias & Ziegler)

d, m \geq 1. Then there are, up to lattice equivalence, only finitely many

d-dimensional lattice polytopes with m interior lattice points.
Theorem (Hensley; Lagarias & Ziegler)

\(d, m \geq 1\). Then there are, up to lattice equivalence, only finitely many
\(d\)-dimensional lattice polytopes with \(m\) interior lattice points.

Note: \(m \geq 1\) is necessary
Theorem (Hensley; Lagarias & Ziegler)

\(d, m \geq 1\). Then there are, up to lattice equivalence, only finitely many \(d\)-dimensional lattice polytopes with \(m\) interior lattice points.

Note: \(m \geq 1\) is necessary

Corollary \# terminal/reflexive polytopes is finite in fixed dimension
Theorem (Hensley; Lagarias & Ziegler)

\[d, m \geq 1. \] Then there are, up to lattice equivalence, only finitely many
\[d \]-dimensional lattice polytopes with \(m \) interior lattice points.

Note: \(m \geq 1 \) is necessary

Corollary \# terminal/reflexive polytopes is finite in fixed dimension

computational classifications:

- reflexive (Kreuzer/Skarke): 1, 16, 4319, 473800776
Theorem (Hensley; Lagarias & Ziegler)

\[d, m \geq 1. \] Then there are, up to lattice equivalence, only finitely many
\[d \]-dimensional lattice polytopes with \(m \) interior lattice points.

Note: \(m \geq 1 \) is necessary

Corollary \# terminal/reflexive polytopes is finite in fixed dimension

computational classifications:

- reflexive (Kreuzer/Skarke): 1, 16, 4319, 473800776
- terminal (Kasperzyk): 1, 5, 637
Theorem (Hensley; Lagarias & Ziegler)

\[d, m \geq 1. \] Then there are, up to lattice equivalence, only finitely many
\[d \]-dimensional lattice polytopes with \(m \) interior lattice points.

Note: \(m \geq 1 \) is necessary

Corollary \# terminal/reflexive polytopes is finite in fixed dimension

computational classifications:

- reflexive (Kreuzer/Skarke): 1, 16, 4319, 473800776
- terminal (Kasperzyk): 1, 5, 637
- smooth reflexive: 1, 5, 18, 124, 866, 7622, 72256, 749892, 8229721

Batyrev, Kreuzer/Nill, Øbro, Lorenz, P
Theorem (Hensley; Lagarias & Ziegler)

\[d, m \geq 1. \] Then there are, up to lattice equivalence, only finitely many
\[d \]-dimensional lattice polytopes with \[m \] interior lattice points.

Note: \[m \geq 1 \] is necessary

Corollary \# terminal/reflexive polytopes is finite in fixed dimension

computational classifications:
- reflexive (Kreuzer/Skarke): 1, 16, 4319, 473800776
- terminal (Kasperzyk): 1, 5, 637
- smooth reflexive: 1, 5, 18, 124, 866, 7622, 72256, 749892, 8229721
 - Batyrev
 - Kreuzer, Nill
 - Øbro
 - Lorenz, P

structural classifications?
simplicial, terminal and reflexive

Polytopes in Low Dimensions

$\blacktriangleright \ d = 1:\quad \quad \quad $
simplicial, terminal and reflexive

Polytopes in Low Dimensions

\[d = 1: \]

\[d = 2: \]

\[P_6 \quad P_5 \quad P_{4a} \quad P_{4b} \quad P_3 \]
simplicial, terminal and reflexive Polytopes in Low Dimensions

$\boldsymbol{d = 1:}$

$\boldsymbol{d = 2:}$

$\begin{align*}
\text{P}_6 & \quad \text{P}_5 \\
\text{P}_{4a} & \quad \text{P}_{4b} \\
\text{P}_3 & \quad \text{P}_3
\end{align*}$

$\boldsymbol{d = 3:}$

$\begin{align*}
\text{P}_3 & \quad \text{P}_3
\end{align*}$
simplicial, terminal and reflexive

Polytopes in Low Dimensions

$d = 1$:

$d = 2$: $P_6, P_5, P_{4a}, P_{4b}, P_3$

$d = 3$:

March 20, 2013 | TUD | Andreas Paffenholz | 6
\(P, P' \) polytopes containing \(0 \) in their interior.

\(\text{direct sum } P \oplus P' := \text{conv} \left(P \times \{0\} \cup \{0\} \times P' \right) \)

\(\text{bipyramid } \text{bipyr}(P) := \text{conv}(\{0\} \times P \cup \{e_1, -e_1\}) \)

\(\text{skew bipyramid } \text{skewbipyr}(P) := \text{conv}(\{0\} \times P \cup \{e_1, v - e_1\}) \) for a vertex \(v \) of \(P \).
General Constructions

- P, P' polytopes containing 0 in their interior.
- direct sum $P \oplus P' := \text{conv}(P \times \{0\} \cup \{0\} \times P')$
- bipyramid $\text{bipyr}(P) := \text{conv}(\{0\} \times P \cup \{e_1, -e_1\})$
- skew bipyramid
 \[
 \text{skewbipyr}(P) := \text{conv}(\{0\} \times P \cup \{e_1, v - e_1\})
 \]
 for a vertex v of P.

- Proposition constructions preserve simplicial/terminal/reflexive
Basic Examples

(1) regular cross polytope: \[C(d) := \text{conv}(\pm e_i \mid 1 \leq i \leq d) \subset \mathbb{R}^d \]

(2) pseudo-Del Pezzo polytope: \[D'(d) := \text{conv}(C(d) \cup \{1\}) \subset \mathbb{R}^d \]

(3) Del Pezzo polytope: \[D(d) := \text{conv}(C(d) \cup \{\pm 1\}) \subset \mathbb{R}^d \]
Basic Examples

(1) regular cross polytope: \[C(d) := \text{conv}(\pm e_i \mid 1 \leq i \leq d) \subset \mathbb{R}^d \]

(2) pseudo-Del Pezzo polytope: \[D'(d) := \text{conv}(C(d) \cup \{1\}) \subset \mathbb{R}^d \]

(3) Del Pezzo polytope: \[D(d) := \text{conv}(C(d) \cup \{\pm 1\}) \subset \mathbb{R}^d \]

Theorem [Voskrenkij & Klyachko, Ewald, Nill]

\[P \text{ simplicial, terminal, and reflexive with antipodal pair of facets} \]
\[\implies P \text{ is direct sum of a centrally symmetric cross polytope, (2), and (3)} \]
η-vectors

- F a facet of P with normal u_F

 → η-vector $\eta^F = (\eta_1, \eta_0, \eta_{-1}, \ldots)$,

 $$\eta_i := |\{ x \in \text{Vert}(P) \mid \langle u, x \rangle = i \}|$$

 grading on Vert(P)
\(\eta \)-vectors

- **F** a facet of \(P \) with normal \(\mathbf{u}_F \)
 \[\eta^F = (\eta_1, \eta_0, \eta_{-1}, \ldots) , \]
 \[\eta_i := |\{ \mathbf{x} \in \text{Vert}(P) \mid \langle \mathbf{u}, \mathbf{x} \rangle = i \}| \]
 grading on \(\text{Vert}(P) \)

- **F** is a special facet
 \[\iff \mathbf{v}_P := \sum_{\mathbf{v} \in \text{Vert}(P)} \mathbf{v} \in \text{cone}(F) \]

- Proposition \(\eta_0 \leq d \) [Nil]
\(\eta \)-vectors

- \(F \) a facet of \(P \) with normal \(u_F \)
 \[\eta^F = (\eta_1, \eta_0, \eta_{-1}, \ldots) \]
 \[\eta_i := |\{ x \in \text{Vert}(P) | \langle u, x \rangle = i \}| \]
 grading on \(\text{Vert}(P) \)

- \(F \) is a special facet
 \[v_P := \sum_{v \in \text{Vert}(P)} v \in \text{cone}(F) \]

- Proposition \(\eta_0 \leq d \) \[\text{[Nill]} \]

- Theorem \(f_0 := |\text{Vert}(P)| \leq 3d \) \[\text{[Casagrande; Øbro]} \]
η-vectors

- **F** a facet of **P** with normal **u**_F

 → **η**-vector \(\eta^F = (\eta_1, \eta_0, \eta_{-1}, \ldots) \),

 \[\eta_i := |\{ x \in \text{Vert}(P) \mid \langle u, x \rangle = i \}| \] grading on \(\text{Vert}(P) \)

- **F** is a special facet

 :\iff\: \mathbf{v}_P := \sum_{x \in \text{Vert}(P)} v \in \text{cone}(F)

- Proposition \(\eta_0 \leq d \) [Nilf]

- Theorem \(f_0 := |\text{Vert}(P)| \leq 3d \) [Casagrande; Øbro]

 proof: \[0 \leq \langle \mathbf{u}_F, \mathbf{v}_P \rangle = \eta_1 + 0 \cdot \eta_0 + (-1) \cdot \eta_{-1} + (-2) \cdot \eta_{-2} + \cdots \]

 \[= d + 0 - \cdots \]
Many Vertices

\[f_0 = 3d: \quad (a) \quad P_6^{d/2} \]
Many Vertices

- $f_0 = 3d$: \(P_{d/2} \)
- Theorem: There are no other cases. [Casagrande]
Many Vertices

▶ $f_0 = 3d$:

(a) $P_6^{\oplus d/2}$

▶ Theorem There are no other cases. [Casagrande]

▶ $f_0 = 3d - 1$:

(b) $P_5 \oplus P_6^{\oplus d/2 - 1}$

(c) proper or skew bipyramid over $P_6^{\oplus (d-1)/2}$
Many Vertices

- $f_0 = 3d$:

 - (a) $P_6^{\oplus d/2}$

- Theorem There are no other cases.
 [Casagrande]

- $f_0 = 3d - 1$:

 - (b) $P_5 \oplus P_6^{\oplus d/2 - 1}$

 - (c) proper or skew bipyramid over $P_6^{\oplus (d-1)/2}$

- Theorem There are no other cases.
 [Øbro & Nill]
Many Vertices

- $f_0 = 3d$:
 - (a) $P_6^\oplus d/2$
- Theorem There are no other cases. [Casagrande]

- $f_0 = 3d - 1$:
 - (b) $P_5 \oplus P_6^\oplus d/2 - 1$
 - (c) proper or skew bipyramid over $P_6^\oplus (d-1)/2$
- Theorem There are no other cases. [Øbro & Nill]

- $f_0 = 3d - 2$:
 - (d) $P_5^2 \oplus P_6^\oplus d/2 - 2$
 - (e) $D(4) \oplus P_6^\oplus d/2 - 2$
 - (f) proper or skew bipyramid over (b) or (c)
 - (g) double proper or skew bipyramid over (a)
Many Vertices

- $f_0 = 3d$: (a) $P_6^{d/2}$

- Theorem: There are no other cases. [Casagrande]

- $f_0 = 3d - 1$: (b) $P_5 \oplus P_6^{d/2 - 1}$
 (c) proper or skew bipyramid over $P_6^{(d-1)/2}$

- Theorem: There are no other cases. [Øbro & Nill]

- $f_0 = 3d - 2$: (d) $P_5^2 \oplus P_6^{d/2 - 2}$
 (e) $D(4) \oplus P_6^{d/2 - 2}$
 (f) proper or skew bipyramid over (b) or (c)
 (g) double proper or skew bipyramid over (a)

- Theorem: There are no other cases. [Assarf, Joswig, and P]
Many Vertices: Algebraic version

- X d-dimensional terminal \mathbb{Q}-factorial Gorenstein toric Fano variety
- in this case: Picard number $\rho(X) = f_0 - d$ for $f_0 =$ number of vertices
- S toric del Pezzo surface with $\rho_S = 4$, \mathbb{P}^2 blown up in three points

Corollary

$$\rho(X) \geq 2d - 2.$$
Then X is a product of $S^{d/2 - k}$ with a toric Fano k-fold for $k \leq 4$.
Many Vertices: proof sketch

- P simplicial, terminal, and reflexive d-polytope
- classify η-vectors for a special facet F
- $v_P := \sum_{v \in \text{Vert}(P)} v$
- ℓ: height of v_P above F
Many Vertices: proof sketch

- P simplicial, terminal, and reflexive d-polytope
- classify η-vectors for a special facet F
- $v_P := \sum_{v \in \text{Vert}(P)} v$
- ℓ: height of v_P above F

<table>
<thead>
<tr>
<th>ℓ</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_1</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>η_0</td>
<td>d</td>
<td>d</td>
<td>$d-1$</td>
<td>d</td>
<td>d</td>
<td>$d-1$</td>
<td>$d-2$</td>
<td>d</td>
</tr>
<tr>
<td>η_{-1}</td>
<td>$d-2$</td>
<td>$d-3$</td>
<td>$d-1$</td>
<td>$d-3$</td>
<td>$d-4$</td>
<td>$d-2$</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>η_{-2}</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>η_{-3}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) (b) (c) (d) (e) (f) (g) all facets special
Many Vertices: proof sketch

- P simplicial, terminal, and reflexive d-polytope
- classify η-vectors for a special facet F
- $v_P := \sum_{v \in \text{Vert}(P)} v$
- ℓ: height of v_P above F
- consider cases separately

<table>
<thead>
<tr>
<th>ℓ</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_1</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>η_0</td>
<td>d</td>
<td>d</td>
<td>$d-1$</td>
<td>d</td>
<td>d</td>
<td>$d-1$</td>
<td>$d-2$</td>
<td></td>
</tr>
<tr>
<td>η_{-1}</td>
<td>$d-2$</td>
<td>$d-3$</td>
<td>$d-1$</td>
<td>$d-3$</td>
<td>$d-4$</td>
<td>$d-2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_{-2}</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>η_{-3}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) (b) (c) (d) (e) (f) (g)

all facets special
Many Vertices: proof sketch

- P simplicial, terminal, and reflexive d-polytope
- classify η-vectors for a special facet F
- $v_P := \sum_{v \in \text{Vert}(P)} v$
- ℓ: height of v_P above F
- consider cases separately
 - e.g., all η^F of type (g) \implies polytope is centrally symmetric

<table>
<thead>
<tr>
<th></th>
<th>ℓ</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_1</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>η_0</td>
<td>d</td>
<td>d</td>
<td>$d-1$</td>
<td>d</td>
<td>d</td>
<td>$d-1$</td>
<td>$d-2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_{-1}</td>
<td>$d-2$</td>
<td>$d-3$</td>
<td>$d-1$</td>
<td>$d-3$</td>
<td>$d-4$</td>
<td>$d-2$</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_{-2}</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_{-3}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) (b) (c) (d) (e) (f) (g)

all facets special
Many Vertices: proof sketch

- P simplicial, terminal, and reflexive d-polytope
- classify η-vectors for a special facet F
- $v_P := \sum_{v \in \text{Vert}(P)} v$
- ℓ: height of v_P above F
- consider cases separately
 - e.g., all η^F of type (g) \implies polytope is centrally symmetric
 - (d) does not occur \iff look at adjacent facet
Many Vertices: proof sketch

- **P** simplicial, terminal, and reflexive d-polytope
- classify η-vectors for a special facet F
- $v_P := \sum_{v \in \text{Vert}(P)} v$
- ℓ: height of v_P above F

<table>
<thead>
<tr>
<th></th>
<th>ℓ</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_1</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>η_0</td>
<td>d</td>
<td>d</td>
<td>d-1</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d-1</td>
<td>d-2</td>
<td></td>
</tr>
<tr>
<td>η_{-1}</td>
<td>d-2</td>
<td>d-3</td>
<td>d-1</td>
<td>d-3</td>
<td>d-4</td>
<td>d-2</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_{-2}</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_{-3}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- consider cases separately
 - e.g., all η^F of type (g) \implies polytope is centrally symmetric
 - (d) does not occur \implies look at adjacent facet
- show that polytopes are either
 - direct sum of P_6 with $(d-2)$-polytope
 - (skew) bipyramid over $(d-1)$-polytope
Many Vertices: proof sketch

- P simplicial, terminal, and reflexive d-polytope
- classify η-vectors for a special facet F
- $v_P := \sum_{v \in \text{Vert}(P)} v$
- ℓ: height of v_P above F

<table>
<thead>
<tr>
<th>ℓ</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_1</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>η_0</td>
<td>d</td>
<td>d</td>
<td>$d - 1$</td>
<td>d</td>
<td>d</td>
<td>$d - 1$</td>
<td>$d - 2$</td>
<td>d</td>
</tr>
<tr>
<td>η_{-1}</td>
<td>$d - 2$</td>
<td>$d - 3$</td>
<td>$d - 1$</td>
<td>$d - 3$</td>
<td>$d - 4$</td>
<td>$d - 2$</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>η_{-2}</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>η_{-3}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) (b) (c) (d) (e) (f) (g)

all facets special

- consider cases separately
 - e.g., all η^F of type (g) \implies polytope is centrally symmetric
 - (d) does not occur \iff look at adjacent facet
 - show that polytopes are either
 - direct sum of P_6 with $(d - 2)$-polytope
 - (skew) bipyramid over $(d - 1)$-polytope
 - exact types via induction
Can we continue?

\[f_0 = 3d - 3 \? \]

- \(R := \text{skew bipyramid over } P_6 \rightarrow 8 \text{ vertices and 12 facets} \)
- \(P := R^\oplus 3 \rightarrow 3 \cdot 8 = 3 \cdot 9 - 3 \text{ vertices in dimension } d = 9 \)
- \(P \) is not a (skew) bipyramid over a sum of \(P_5 \) and \(P_6 \)
Can we continue?

- $f_0 = 3d - 3$?

 - $R :=$ skew bipyramid over P_6
 \rightarrow 8 vertices and 12 facets
 - $P := R^{\oplus 3}$
 \rightarrow 3 · 8 = 3 · 9 − 3 vertices in dimension $d = 9$

 - P is not a (skew) bipyramid over a sum of P_5 and P_6

- **Theorem** [Assarf, Joswig, P]

 P terminal, simplicial, reflexive d-polytope with $3d - 2$ vertices

 Then P is $\triangleright P_5^2 \oplus P_6^{\oplus d/2-2}$, or

 $\triangleright D(4) \oplus P_6^{\oplus d/2-2}$, or

 \triangleright (double) proper/skew bipyramid over $P_6^{\oplus k}$ for suitable k
Can we continue?

$\triangledown f_0 = 3d - 3$?

- $R :=$ skew bipyramid over $P_6 \rightarrow 8$ vertices and 12 facets
- $P := R^{\oplus 3} \rightarrow 3 \cdot 8 = 3 \cdot 9 - 3$ vertices in dimension $d = 9$
- P is not a (skew) bipyramid over a sum of P_5 and P_6

- Theorem

 P terminal, simplicial, reflexive d-polytope with $3d - 2$ vertices

 Then $P = Q \oplus P_6^{\oplus k}$ for suitable k and dim $Q \leq 4$.

[Assarf, Joswig, P]
Can we continue?

\(f_0 = 3d - 3 \) ?

- \(R := \text{skew bipyramid over } P_6 \)
 \(\rightarrow \) 8 vertices and 12 facets

- \(P := R \oplus^3 \rightarrow 3 \cdot 8 = 3 \cdot 9 - 3 \) vertices in dimension \(d = 9 \)

- \(P \) is not a (skew) bipyramid over a sum of \(P_5 \) and \(P_6 \)

Theorem [Assarf, Joswig, P]

\(P \) terminal, simplicial, reflexive \(d \)-polytope with \(3d - 2 \) vertices

Then \(P = Q \oplus P_6 \oplus^k \) for suitable \(k \) and \(\dim Q \leq 4 \).

Conjecture [Assarf, Joswig, P]

\(P \) smooth Fano \(d \)-polytope with \(3d - k \) vertices, \(k \leq d/3 \)

Then \(P = Q \oplus P_6^l \) for \(\dim Q \leq 3k \) and appropriate \(l \).