Finiteness of the polyhedral \mathbb{Q}-codegree spectrum

Andreas Paffenholz

AMS Western Sectional Meeting, San Francisco
Polytopes and Lattices

Polytope: \(P := \text{conv}(v_1, \ldots, v_n) \) convex hull of finitely many vectors in \(\mathbb{R}^d \).
Polytope: \(P := \text{conv}(v_1, \ldots, v_n) \) convex hull of finitely many vectors in \(\mathbb{R}^d \).
\[
= \{ x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}
\]
bounded intersection of finitely many affine half spaces.

[Minkowski-Weyl(-Farkas) \(\sim \)1900]
Polytopes and Lattices

Polytope: \(P := \text{conv}(v_1, \ldots, v_n) \) convex hull of finitely many vectors in \(\mathbb{R}^d \).
\[
= \{ x | \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}
\]
bounded intersection of finitely many affine half spaces.

\[\text{[Minkowski-Weyl(-Farkas) \sim 1900]}\]

Lattice \(\Lambda \): \(\mathbb{Z} \)-span of linearly independent vectors in \(\mathbb{R}^d \)
Polytopes and Lattices

- **Polytope**: $P := \text{conv}(v_1, ..., v_n)$ convex hull of finitely many vectors in \mathbb{R}^d.

 $= \{ x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}$

 bounded intersection of finitely many affine half spaces.

 [Minkowski-Weyl(-Farkas) \sim1900]

- **Lattice** Λ: \mathbb{Z}-span of linearly independent vectors in \mathbb{R}^d

 \longrightarrow can assume $\Lambda \cong \mathbb{Z}^d$
Polytopes and Lattices

Polytope: \(P := \text{conv}(v_1, \ldots, v_n) \) convex hull of finitely many vectors in \(\mathbb{R}^d \).

\[= \{ x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \} \]
bounded intersection of finitely many affine half spaces.

[Minkowski-Weyl(-Farkas) \(\sim \) 1900]

Lattice \(\Lambda \): \(\mathbb{Z} \)-span of linearly independent vectors in \(\mathbb{R}^d \)

\[\longrightarrow \text{can assume } \Lambda \cong \mathbb{Z}^d \]

Lattice polytope: polytope with vertices in \(\mathbb{Z}^d \)
Polytopes and Lattices

- Polytope: \(P := \text{conv}(v_1, \ldots, v_n) \) convex hull of finitely many vectors in \(\mathbb{R}^d \).

 \[\{ x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \} \]

 bounded intersection of finitely many affine half spaces.

 [Minkowski-Weyl(-Farkas) \(\sim \) 1900]

- Lattice \(\Lambda \): \(\mathbb{Z} \)-span of linearly independent vectors in \(\mathbb{R}^d \)

 \[\longrightarrow \text{can assume} \ \Lambda \cong \mathbb{Z}^d \]

- Lattice polytope: polytope with vertices in \(\mathbb{Z}^d \)

 \[\text{appear in} \ \text{toric geometry} \]
Polytopes and Lattices

- **Polytope**: \(P := \text{conv}(v_1, \ldots, v_n) \) convex hull of finitely many vectors in \(\mathbb{R}^d \).

\[
= \{ x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}
\]

bounded intersection of finitely many affine half spaces.

[Minkowski-Weyl(-Farkas) ~1900]

- **lattice** \(\Lambda \): \(\mathbb{Z} \)-span of linearly independent vectors in \(\mathbb{R}^d \)

\[\longrightarrow \text{can assume } \Lambda \cong \mathbb{Z}^d \]

- **lattice polytope**: polytope with vertices in \(\mathbb{Z}^d \)

- appear in toric geometry, combinatorial and integer optimization
Polytopes and Lattices

Polytope: \(P := \text{conv}(v_1, \ldots, v_n) \) convex hull of finitely many vectors in \(\mathbb{R}^d \).
\[
= \{ x \mid \langle a_i, x \rangle \leq b_i, \; 1 \leq i \leq m \}
\]
bounded intersection of finitely many affine half spaces.

[Minkowski-Weyl(-Farkas) \sim 1900]

Lattice \(\Lambda \): \(\mathbb{Z} \)-span of linearly independent vectors in \(\mathbb{R}^d \)
\[\rightarrow \text{can assume } \Lambda \cong \mathbb{Z}^d \]

Lattice polytope: polytope with vertices in \(\mathbb{Z}^d \)

appear in toric geometry, combinatorial and integer optimization, number theory
Polytopes and Lattices

Polytope: \(P := \text{conv}(v_1, \ldots, v_n) \) convex hull of finitely many vectors in \(\mathbb{R}^d \).

\[= \{ x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \} \]

bounded intersection of finitely many affine half spaces.

[Minkowski-Weyl(-Farkas) \sim 1900]

Lattice \(\Lambda \): \(\mathbb{Z} \)-span of linearly independent vectors in \(\mathbb{R}^d \)

\[\longrightarrow \text{can assume } \Lambda \cong \mathbb{Z}^d \]

Lattice polytope: polytope with vertices in \(\mathbb{Z}^d \)

appear in toric geometry, combinatorial and integer optimization, number theory, representation theory, \ldots
Ehrhart function: $g_P(k) := |kP \cap \mathbb{Z}^d|$
Ehrhart function: $g_P(k) := |kP \cap \mathbb{Z}^d|$
Ehrhart function: $g_P(k) := |kP \cap \mathbb{Z}^d|$
Ehrhart Polynomials, Degree, and Codegree

- Ehrhart function: $g_P(k) := |kP \cap \mathbb{Z}^d|$
- Theorem: $g_P(k)$ is a polynomial of degree d

$g_P(t) = \frac{5}{2} t^2 + \frac{5}{2} t + 1$

1, 6, 16, 31, …

[Ehrhart 1962]
Ehrhart Polynomials, Degree, and Codegree

- **Ehrhart function**: \(g_P(k) := |kP \cap \mathbb{Z}^d| \)
- **Theorem**: \(g_P(k) \) is a polynomial of degree \(d \) [Ehrhart 1962]

- **\(h^* \)-polynomial**: numerator of rational generating function:

 \[
 \sum_{k \geq 0} g_P(k) t^k = \frac{h^*(t)}{(1 - t)^d} = \frac{h^*_r t^r + \cdots + h^*_0}{(1 - t)^d}
 \]

 for nonnegative integers \(h^*_r, h^*_{r-1}, \ldots, h^*_0 \) [Stanley, 1980]

1, 6, 16, 31, \ldots

\[g_P(t) = \frac{5}{2} t^2 + \frac{5}{2} t + 1 \]
Ehrhart Polynomials, Degree, and Codegree

- **Ehrhart function**: \(g_P(k) := |kP \cap \mathbb{Z}^d| \)
- **Theorem**: \(g_P(k) \) is a polynomial of degree \(d \) \[Ehrhart 1962\]

- **\(h^* \)-polynomial**: numerator of rational generating function:

\[
\sum_{k \geq 0} g_P(k) t^k = \frac{h^*(t)}{(1 - t)^d} = \frac{h_r^* t^r + \cdots + h_0^*}{(1 - t)^d}
\]

for nonnegative integers \(h_r^*, h_{r-1}^*, \ldots, h_0^* \) \[Stanley, 1980\]

degree of \(P \): \(\text{deg } P := r \)

codegree of \(P \): \(\text{codeg } P := d + 1 - \text{deg } P \)

1, 6, 16, 31, \ldots

\[
g_P(t) = \frac{5}{2} t^2 + \frac{5}{2} t + 1
\]
Ehrhart Polynomials, Degree, and Codegree

- Ehrhart function: \(g_P(k) := |kP \cap \mathbb{Z}^d| \)

- Theorem: \(g_P(k) \) is a polynomial of degree \(d \) [Ehrhart 1962]

- \(h^*\)-polynomial: numerator of rational generating function:

\[
\sum_{k \geq 0} g_P(k) t^k = \frac{h^*(t)}{(1 - t)^d} = \frac{h^*_r t^r + \cdots + h^*_0}{(1 - t)^d}
\]

for nonnegative integers \(h^*_r, h^*_{r-1}, \ldots, h^*_0 \) [Stanley, 1980]

degree of \(P \): \(\deg P := r \)

codegree of \(P \): \(\text{codeg } P := d + 1 - \deg P \)

- \(\deg P = 0 \), then \(P \) is a unit simplex

\[
1, 6, 16, 31, \ldots \quad g_P(t) = \frac{5}{2} t^2 + \frac{5}{2} t + 1
\]
Ehrhart Polynomials, Degree, and Codegree

- **Ehrhart function**: $g_P(k) := |kP \cap \mathbb{Z}^d|$

- **Theorem**: $g_P(k)$ is a polynomial of degree d [Ehrhart 1962]

- **h^*-polynomial**: numerator of rational generating function:
 \[
 \sum_{k \geq 0} g_P(k) t^k = \frac{h^*(t)}{(1 - t)^d} = \frac{h_r^* t^r + \cdots + h_0^*}{(1 - t)^d}
 \]
 for nonnegative integers $h_r^*, h_{r-1}^*, \ldots, h_0^*$ [Stanley, 1980]

 - degree of P: $\deg P := r$
 - codegree of P: $\text{codeg } P := d + 1 - \deg P$

- $\deg P = 0$, then P is a unit simplex
- lattice pyramids preserve the codegree
Ehrhart Polynomials, Degree, and Codegree

- **Ehrhart function:** \(g_P(k) := |kP \cap \mathbb{Z}^d| \)

- **Theorem:** \(g_P(k) \) is a polynomial of degree \(d \)
 [Ehrhart 1962]

- **\(h^* \)-polynomial:** numerator of rational generating function:
 \[
 \sum_{k \geq 0} g_P(k) t^k = \frac{h^*(t)}{(1 - t)^d} = \frac{h_r^* t^r + \cdots + h_0^*}{(1 - t)^d}
 \]
 for nonnegative integers \(h_r^*, h_{r-1}^*, \ldots, h_0^* \)
 [Stanley, 1980]

 - **degree of \(P \):** \(\deg P := r \)
 - **codegree of \(P \):** \(\text{codeg } P := d + 1 - \deg P \)

- \(\deg P = 0 \), then \(P \) is a unit simplex
- lattice pyramids preserve the codegree
Ehrhart Polynomials, Degree, and Codegree

► Ehrhart function: \(g_P(k) := |kP \cap \mathbb{Z}^d| \)

► Theorem: \(g_P(k) \) is a polynomial of degree \(d \) \[Ehrhart 1962\]

► \(h^* \)-polynomial: numerator of rational generating function:

\[
\sum_{k \geq 0} g_P(k) t^k = \frac{h^*(t)}{(1 - t)^d} = \frac{h^*_r t^r + \cdots + h^*_0}{(1 - t)^d}
\]

for nonnegative integers \(h^*_r, h^*_{r-1}, \ldots, h^*_0 \) \[Stanley, 1980\]

degree of \(P \): \(\text{deg } P := r \)

codegree of \(P \): \(\text{codeg } P := d + 1 - \text{deg } P \)

► \(\text{deg } P = 0 \), then \(P \) is a unit simplex

► lattice pyramids preserve the codegree

► classifications for codegree \(\text{codeg} = 1, 2 \)

(up to lattice pyramids) \[Batyrev, Nill, Treutlein\]
Cayley-Polytopes

Structure of polytopes with large codegree?

polytopes with lattice projection onto unit simplex \((:= \text{ Cayley polytopes}) \)
Cayley-Polytopes

- Structure of polytopes with large codegree?
 ➔ polytopes with lattice projection onto unit simplex (:= Cayley polytopes)

- Conjecture:
 \[\text{codeg} > \frac{d + 2}{2} \quad \Rightarrow \quad \text{P nontrivially projects onto lattice simplex} \]

[Batyrev, Nill, Dickenstein]
Cayley-Polytopes

- Structure of polytopes with large codegree?
 - polytopes with lattice projection onto unit simplex (:= Cayley polytopes)

- Conjecture: [Batyrev, Nill, Dickenstein]
 \[\text{codeg} > \frac{d + 2}{2} \implies \text{P nontrivially projects onto lattice simplex} \]

- true for smooth polytopes [Dickenstein, Nill, ’10]
 (smooth := rays of each normal cone are lattice basis)
Structure of polytopes with large codegree?

Polytopes with lattice projection onto unit simplex (\(\equiv\) Cayley polytopes)

Conjecture: \([\text{Batyrev, Nill, Dickenstein}]\)

\[
\text{codeg} > \frac{d + 2}{2} \implies \text{P nontrivially projects onto lattice simplex}
\]

True for smooth polytopes \([\text{Dickenstein, Nill, '10}]\)

(smooth \(\equiv\) rays of each normal cone are lattice basis)

Theorem: \([\text{Haase, Nill, Payne}]\)

\[
2d > (\deg P)^2 + 19 \deg P - 4 \\
\implies \text{P nontrivially projects onto lattice simplex}
\]
Cayley-Polytopes

Structure of polytopes with large codegree?

→ polytopes with lattice projection onto unit simplex (:= Cayley polytopes)

Conjecture: [Batyrev, Nill, Dickenstein]

\[
\text{codeg} > \frac{d + 2}{2} \implies P \text{ nontrivially projects onto lattice simplex}
\]

deep for smooth polytopes [Dickenstein, Nill, ’10]
(smooth := rays of each normal cone are lattice basis)

Theorem: [Haase, Nill, Payne]

\[
2d > (\deg P)^2 + 19 \deg P - 4 \implies P \text{ nontrivially projects onto lattice simplex}
\]

\[
(\deg P)^2 + 19 \deg P - 4 \gg 2 \deg P - 1
\]
\(P := \{ x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \} \) lattice polytope
with \(a_i, b_i \) integer, entries of \(a_i \) coprime (\(a_i \) is primitive)
Adjunction and \mathbb{Q}-Codegree

\[P := \{ x | \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \} \text{ lattice polytope} \]
\[\text{with } a_i, b_i \text{ integer, entries of } a_i \text{ coprime (} a_i \text{ is primitive)} \]

\[\text{adjoint polytope: } P^{(c)} := \{ x | \langle a_i, x \rangle \leq b_i - c \} \text{ for } c \geq 0. \]
Adjunction and \(\mathbb{Q} \)-Codegree

- \(P := \{x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m\} \) lattice polytope
 with \(a_i, b_i \) integer, entries of \(a_i \) coprime (\(a_i \) is primitive)

- adjoint polytope: \(P^{(c)} := \{x \mid \langle a_i, x \rangle \leq b_i - c\} \) for \(c \geq 0 \).
 \[\rightarrow \] move facets inward with constant lattice speed
Adjunction and \mathbb{Q}-Codegree

- $P := \{ x | \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}$ lattice polytope with a_i, b_i integer, entries of a_i coprime (a_i is primitive)

- adjoint polytope: $P^{(c)} := \{ x | \langle a_i, x \rangle \leq b_i - c \}$ for $c \geq 0$.
 move facets inward with constant lattice speed
Adjunction and \mathbb{Q}-Codegree

$P := \{x | \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m\}$ lattice polytope
with a_i, b_i integer, entries of a_i coprime (a_i is primitive)

Adjoint polytope: $P^{(c)} := \{x | \langle a_i, x \rangle \leq b_i - c\}$ for $c \geq 0$.
move facets inward with constant lattice speed
Adjunction and \mathbb{Q}-Codegree

- $P := \{ x | \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}$ lattice polytope
 with a_i, b_i integer, entries of a_i coprime (a_i is \textit{primitive})

- adjoint polytope: $P^{(c)} := \{ x | \langle a_i, x \rangle \leq b_i - c \}$ for $c \geq 0$.
 \rightarrow move facets inward with constant lattice speed
Adjunction and \mathbb{Q}-Codegree

- $P := \{x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m\}$ lattice polytope with a_i, b_i integer, entries of a_i coprime (a_i is primitive)

- adjoint polytope: $P^{(c)} := \{x \mid \langle a_i, x \rangle \leq b_i - c\}$ for $c \geq 0$.
 \[\rightarrow \text{move facets inward with constant lattice speed} \]

- \mathbb{Q}-codegree: $\text{codeg}_\mathbb{Q} P := \left[\sup(c \mid P^{(c)} \neq \emptyset) \right]^{-1} = \left[\sup(c \mid \dim P^{(c)} \neq \dim P) \right]^{-1}$

[Dickenstein, Di Rocco, Piene]
Adjunction and \mathbb{Q}-Codegree

$P := \{ x | \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}$ lattice polytope

with a_i, b_i integer, entries of a_i coprime (a_i is primitive)

adjoint polytope: $P^{(c)} := \{ x | \langle a_i, x \rangle \leq b_i - c \}$ for $c \geq 0.$

move facets inward with constant lattice speed

\mathbb{Q}-codegree: $\text{codeg}_\mathbb{Q} P := [\sup(c | P^{(c)} \neq \emptyset)]^{-1} = [\sup(c | \dim P^{(c)} \neq \dim P)]^{-1}$

[Dickenstein, Di Rocco, Piene]
Adjunction and \(\mathbb{Q} \)-Codegree

- \(P := \{ x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \} \) lattice polytope

 with \(a_i, b_i \) integer, entries of \(a_i \) coprime (\(a_i \) is primitive)

- adjoint polytope: \(P^{(c)} := \{ x \mid \langle a_i, x \rangle \leq b_i - c \} \) for \(c \geq 0 \).

 \(\rightarrow \) move facets inward with constant lattice speed

- \(\mathbb{Q} \)-codegree: \(\text{codeg}_\mathbb{Q} P := \left[\sup(c \mid P^{(c)} \neq \emptyset) \right]^{-1} = \left[\sup(c \mid \dim P^{(c)} \neq \dim P) \right]^{-1} \)

 [Dickenstein, Di Rocco, Piene]
Adjunction and \mathbb{Q}-Codegree

- $P := \{ x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}$ lattice polytope with a_i, b_i integer, entries of a_i coprime (a_i is primitive)

- adjoint polytope: $P^{(c)} := \{ x \mid \langle a_i, x \rangle \leq b_i - c \}$ for $c \geq 0$. move facets inward with constant lattice speed

- \mathbb{Q}-codegree: $\text{codeg}_\mathbb{Q} P := [\sup(c \mid P^{(c)} \neq \emptyset)]^{-1} = [\sup(c \mid \dim P^{(c)} \neq \dim P)]^{-1}$

[Dickenstein, Di Rocco, Piene]
Adjunction and \mathbb{Q}-Codegree

$P := \{ x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}$ lattice polytope
with a_i, b_i integer, entries of a_i coprime (a_i is primitive)

adjoint polytope: $P(c) := \{ x \mid \langle a_i, x \rangle \leq b_i - c \}$ for $c \geq 0$.
move facets inward with constant lattice speed

\mathbb{Q}-codegree: $\text{codeg}_\mathbb{Q} P := \left[\sup(c \mid P(c) \neq \emptyset) \right]^{-1} = \left[\sup(c \mid \dim P(c) \neq \dim P) \right]^{-1}$

[Dickenstein, Di Rocco, Piene]
Adjunction and \mathbb{Q}-Codegree

- $P := \{ x \mid \langle a_i, x \rangle \leq b_i, \ 1 \leq i \leq m \}$ lattice polytope with a_i, b_i integer, entries of a_i coprime (a_i is primitive)

- Adjoint polytope: $P^{(c)} := \{ x \mid \langle a_i, x \rangle \leq b_i - c \}$ for $c \geq 0$.
 \[\overset{\rightarrow}{\text{move facets inward with constant lattice speed}} \]

- \mathbb{Q}-codegree: $\text{codeg}_\mathbb{Q} P := \left[\sup(c \mid P^{(c)} \neq \emptyset) \right]^{-1} = \left[\sup(c \mid \dim P^{(c)} \neq \dim P) \right]^{-1}$

[Dickenstein, Di Rocco, Piene]
Bounds on the \mathbb{Q}-Codegree

\[\text{codeg}_\mathbb{Q} \ell \cdot P = \frac{1}{\ell} \text{codeg}_\mathbb{Q} P \]
Bounds on the \mathbb{Q}-Codegree

- $\text{codeg}_\mathbb{Q} \ell \cdot P = \frac{1}{\ell} \text{codeg}_\mathbb{Q} P$
- $\text{codeg}_\mathbb{Q} P \leq 1$ if P has an interior lattice point.
Bounds on the \mathbb{Q}-Codegree

- $\text{codeg}_\mathbb{Q} \ell \cdot P = \frac{1}{\ell} \text{codeg}_\mathbb{Q} P$
- $\text{codeg}_\mathbb{Q} P \leq 1$ if P has an interior lattice point.

$\implies \text{codeg}_\mathbb{Q} P \leq \text{codeg} P \leq d + 1$
Bounds on the \mathbb{Q}-Codegree

- $\text{codeg}_\mathbb{Q} \ell \cdot P = \frac{1}{\ell} \text{codeg}_\mathbb{Q} P$
- $\text{codeg}_\mathbb{Q} P \leq 1$ if P has an interior lattice point.

$\implies \text{codeg}_\mathbb{Q} P \leq \text{codeg} P \leq d + 1$

- **Theorem:** $\text{codeg}_\mathbb{Q} P \geq \frac{d + 2}{2}$

$\implies P$ nontrivially projects onto lattice simplex

[Di Rocco, Haase, Nill, P ‘14]
Bounds on the \mathbb{Q}-Codegree

- $\text{codeg}_\mathbb{Q} \ell \cdot P = \frac{1}{\ell} \text{codeg}_\mathbb{Q} P$
- $\text{codeg}_\mathbb{Q} P \leq 1$ if P has an interior lattice point.
 \[\implies \text{codeg}_\mathbb{Q} P \leq \text{codeg} P \leq d + 1 \]

Theorem: $\text{codeg}_\mathbb{Q} P \geq \frac{d + 2}{2}$
 \[\implies P \text{ nontrivially projects onto lattice simplex} \]
 [Di Rocco, Haase, Nill, P '14]

- almost best possible:
 $\text{codeg}_\mathbb{Q} 2\Delta_2 = \frac{3}{2} = \frac{2+1}{2}$

\[\text{codeg}_\mathbb{Q} 2\Delta_2 = \frac{3}{2} \]
Bounds on the \mathbb{Q}-Codegree

- $\text{codeg}_\mathbb{Q} \ell \cdot P = \frac{1}{\ell} \text{codeg}_\mathbb{Q} P$
- $\text{codeg}_\mathbb{Q} P \leq 1$ if P has an interior lattice point.

$\implies \text{codeg}_\mathbb{Q} P \leq \text{codeg} P \leq d + 1$

Theorem: $\text{codeg}_\mathbb{Q} P \geq \frac{d + 2}{2}$

$\implies P$ nontrivially projects onto lattice simplex

[Di Rocco, Haase, Nill, P’14]

- almost best possible:

 $\text{codeg}_\mathbb{Q} 2\Delta_2 = \frac{3}{2} = \frac{2+1}{2}$

- Conjecture: $\text{codeg}_\mathbb{Q} P > \frac{d + 1}{2}$ suffices
rational fan \rightarrow rays have minimal integral generators $a_i \in \mathbb{Z}^d$
Toric Geometry

Σ rational fan \rightarrow rays have minimal integral generators $a_i \in \mathbb{Z}^d$

fan Σ \leftrightarrow projective toric variety X

[Danilov '78, Fulton '93, Oda '88, Cox '95]
Å

\[\Sigma \] rational fan \[\rightarrow\] rays have minimal integral generators \(a_i \in \mathbb{Z}^d \)

fan \(\Sigma \) \[\leftrightarrow\] projective toric variety \(X \)

[Danilov '78, Fulton '93, Oda '88, Cox '95]

ray \(\tau \) \[\leftrightarrow\] torus invariant divisor \(D_\tau \)
A rational fan Σ is associated with a projective toric variety X. Each ray τ corresponds to a torus invariant divisor D_τ. A Weil divisor D is defined as $D := \sum b_\tau D_\tau$.

[Danilov '78, Fulton '93, Oda '88, Cox '95]
Toric Geometry

- **Σ** rational fan \longrightarrow rays have minimal integral generators $a_i \in \mathbb{Z}^d$

fan Σ \iff projective toric variety X

[Danilov '78, Fulton '93, Oda '88, Cox '95]

ray τ \iff torus invariant divisor D_τ

- Weil divisor $D := \sum b_\tau D_\tau$

D ample und Q-Cartier:

\iff $P_D := \{x \mid \langle a_\tau, x \rangle \leq b_\tau\}$

polytope with normal fan Σ
\[\Sigma \text{ rational fan} \quad \rightarrow \quad \text{rays have minimal integral generators } a_i \in \mathbb{Z}^d \]

\[\text{fan } \Sigma \quad \leftrightarrow \quad \text{projective toric variety } X \]

\[[\text{Danilov '78, Fulton '93, Oda '88, Cox '95}] \]

\[\text{ray } \tau \quad \leftrightarrow \quad \text{torus invariant divisor } D_\tau \]

\[\text{Weil divisor } D := \sum b_\tau D_\tau \]

\[D \text{ ample und } \mathbb{Q}\text{-Cartier} : \quad \leftrightarrow \quad P_D := \{ x \mid \langle a_\tau, x \rangle \leq b_\tau \} \]

\[\text{polytope with normal fan } \Sigma \]
Toric Geometry

- Σ rational fan \rightarrow rays have minimal integral generators $a_i \in \mathbb{Z}^d$

fan Σ \leftrightarrow projective toric variety X

[Danilov ’78, Fulton ’93, Oda ’88, Cox ’95]

ray τ \leftrightarrow torus invariant divisor D_τ

- **Weil divisor** $D := \sum b_\tau D_\tau$

D ample und \mathbb{Q}-Cartier:

\longleftrightarrow $P_D := \{x | \langle a_\tau, x \rangle \leq b_\tau\}$

polytope with normal fan Σ

D big: X and P_D have the same dimension
- **Σ** rational fan \longrightarrow rays have minimal integral generators $a_i \in \mathbb{Z}^d$

fan Σ \longleftrightarrow projective toric variety X

[Danilov ’78, Fulton ’93, Oda ’88, Cox ’95]

- ray τ \longleftrightarrow torus invariant divisor D_τ

- **Weil divisor** $D := \sum b_\tau D_\tau$

D ample und \mathbb{Q}-Cartier:

\longleftrightarrow $P_D := \{x \mid \langle a_\tau, x \rangle \leq b_\tau\}$

polytope with normal fan Σ

- D big: X and P_D have the same dimension

- X is smooth (i.e. is a manifold):
 - minimal generators of every cone are a lattice basis
(X, L) polarized toric variety, K_X canonical divisor on X
(X, L) polarized toric variety, K_X canonical divisor on X

family of adjoint divisors: $L + t \cdot K_X$
(\(X, L\)) polarized toric variety, \(K_X\) canonical divisor on \(X\)

family of adjoint divisors: \(L + t \cdot K_X\)

(unnormalized) spectral value:
\[
\sigma(X) := \sup(t \mid L + t \cdot K_X \text{ is big})
\]
(X, L) polarized toric variety, K_X canonical divisor on X

family of adjoint divisors: $L + t \cdot K_X$

(unnormalized) spectral value:

$$\sigma(X) := \sup(t \mid L + t \cdot K_X \text{ is big})$$

(X, L) toric \rightarrow lattice polytope $P = \{x \mid \langle a_i, x \rangle \leq b_i \}$

and $L = \sum b_i D_i$, $K_X = - \sum D_i$
(X, L) polarized toric variety, K_X canonical divisor on X

family of adjoint divisors: L + t · K_X

(unnormalized) spectral value:
\[\sigma(X) := \sup(t \mid L + t \cdot K_X \text{ is big}) \]

(X, L) toric \quad \rightarrow \quad \text{lattice polytope } P = \{x \mid \langle a_i, x \rangle \leq b_i\}

and \quad L = \sum b_i D_i, \quad K_X = -\sum D_i

\[\implies \text{in the toric case } \sigma(X) = \text{codeg}_\mathbb{Q}(P) \]
(\(X, L\)) polarized toric variety, \(K_X\) canonical divisor on \(X\).

- family of adjoint divisors: \(L + t \cdot K_X\)

- (unnormalized) spectral value:
 \[
 \sigma(X) := \sup(t \mid L + t \cdot K_X \text{ is big})
 \]

\((\(X, L\))\) toric \(\implies\) lattice polytope \(P = \{x \mid \langle a_i, x \rangle \leq b_i\}\) and \(L = \sum b_i D_i, K_X = -\sum D_i\)

\[\implies\text{ in the toric case } \sigma(X) = \text{codeg}_\mathbb{Q}(P)\]

Theorem: \(\sigma \geq (d+2)/2 \implies\) morphism \(\pi : \mathbb{P}(H_0 \oplus H_1 \oplus \cdots \oplus H_m) \rightarrow X\)

\(H_i\) line bundles over toric variety of dim \(\leq 2(n + 1 - \mu)\)

[Di Rocco, Haase, Nill, P. ’14]
\[S_d := \left\{ \mu \mid \exists (X, L) \text{ smooth proj.} \right. \]
\[\left. d\text{-dim. pol. variety} \right. \]
\[\left. \text{with } \mu = \mu(L) \right. \]
The Spectrum Conjecture of Fujita

\[S_d := \left\{ \mu \mid \exists (X, L) \text{ smooth proj.} \right. \]
\[\left. \begin{array}{c}
\text{d-dim. pol. variety} \\
\text{with } \mu = \mu(L)
\end{array} \right\} \]

Spectrum Conjecture:

\[d \geq 1, \varepsilon > 0 ; \text{ Then} \]
\[\{ \mu \in S_d \mid \mu > \varepsilon \} \text{ is a finite set.} \]

[Fujita '92,'96]
The Spectrum Conjecture of Fujita

\[S_d := \left\{ \mu \mid \exists (X,L) \text{ smooth proj.} \right. \]
\[\text{d-dim. pol. variety} \]
\[\text{with } \mu = \mu(L) \right\} \]

Spectrum Conjecture:
\[d \geq 1, \varepsilon > 0 ; \text{ Then} \]
\[\{ \mu \in S_d \mid \mu > \varepsilon \} \text{ is a finite set.} \]

[Fujita '92,'96]

▷ true for \(d = 2, 3 \) [Fujita '96]
The Spectrum Conjecture of Fujita

\[S_d := \left\{ \mu \mid \exists (X, L) \text{ smooth proj.} \right. \]
\[\quad \text{d-dim. pol. variety} \]
\[\left. \text{with } \mu = \mu(L) \right\} \]

\[S^p_d := \left\{ \mu \mid \exists \text{ smooth d-dim.} \right. \]
\[\quad \text{lattice polytope } P \]
\[\left. \text{with } \mu = \mu(P) \right\} \]

Spectrum Conjecture:
\[d \geq 1, \varepsilon > 0; \text{ Then} \]
\[\{\mu \in S_d \mid \mu > \varepsilon\} \text{ is a finite set.} \]

[Fujita '92,'96]

▷ true for \(d = 2, 3 \) [Fujita '96]
The Spectrum Conjecture of Fujita

\[S_d := \left\{ \mu \mid \exists (X, L) \text{ smooth proj.} \right. \]
\[\text{d-dim. pol. variety} \]
\[\text{with } \mu = \mu(L) \right\} \]

\[S^p_d := \left\{ \mu \mid \exists \text{ smooth } d\text{-dim.} \right. \]
\[\text{lattice polytope } P \]
\[\text{with } \mu = \mu(P) \right\} \]

Spectrum Conjecture:
\[d \geq 1, \varepsilon > 0 \; \text{Then} \]
\[\{\mu \in S_d \mid \mu > \varepsilon\} \text{ is a finite set.} \]

[Fujita '92,'96]

▷ true for \(d = 2, 3 \)

[Fujita '96]

Polyhedral Spectrum Conjecture:
\[d \geq 1, \varepsilon > 0 \; \text{Then} \]
\[\{\mu \in S^p_d \mid \mu > \varepsilon\} \text{ is a finite set.} \]
The Spectrum Conjecture of Fujita

\[
S_d := \left\{ \mu \mid \exists (X, L) \text{ smooth proj. } \right. \\
d\text{-dim. pol. variety} \\
\text{with } \mu = \mu(L) \right\}
\]

\[
S_d^p := \left\{ \mu \mid \exists \text{ smooth } d\text{-dim.} \\
lattice polytope } P \\
\text{with } \mu = \mu(P) \right\}
\]

Spectrum Conjecture:
\[
d \geq 1, \varepsilon > 0; \text{ Then } \{\mu \in S_d \mid \mu > \varepsilon\} \text{ is a finite set.}
\]

[Fujita '92,'96]

Polyhedral Spectrum Conjecture:
\[
d \geq 1, \varepsilon > 0; \text{ Then } \{\mu \in S_d^p \mid \mu > \varepsilon\} \text{ is a finite set.}
\]

[Polyhedral Spectrum Conjecture:]

\[
\triangleright \text{ true for } d = 2, 3 \quad \text{[Fujita '96]}
\]

Theorem: \(d \geq 1, \varepsilon > 0; \text{ Then } \{\mu \in S_d^p \mid \mu > \varepsilon\} \text{ is a finite set.} \)

[P. '13]
The Spectrum Conjecture of Fujita

\[S_d := \left\{ \mu \mid \exists (X, L) \text{ smooth proj. } \right. \\
\left. d\text{-dim. pol. variety with } \mu = \mu(L) \right\} \]

\[S^p_d := \left\{ \mu \mid \exists \text{ smooth } d\text{-dim. lattice polytope } P \\
\text{ with } \mu = \mu(P) \right\} \]

Spectrum Conjecture:
\[d \geq 1, \varepsilon > 0; \text{ Then } \{ \mu \in S_d \mid \mu > \varepsilon \} \text{ is a finite set.} \]

\[\triangleright \text{ true for } d = 2, 3 \quad \text{[Fujita '96]} \]

\[\text{Theorem: } d \geq 1, \varepsilon > 0; \text{ Then } \{ \mu \in S^p_d \mid \mu > \varepsilon \} \text{ is a finite set.} \]

\[\text{Cor.: Spectrum conj. holds for } \mathbb{Q}\text{-Gorenstein polarized toric varieties} \]

\[\text{[P. '13]} \]
The Spectrum Conjecture of Fujita

\[S_d := \left\{ \mu \mid \exists (X, L) \text{ smooth proj. } \right. \]
\[\left. d\text{-dim. pol. variety with } \mu = \mu(L) \right\} \]

\[S^p_d := \left\{ \mu \mid \exists \text{ smooth } d\text{-dim. lattice polytope } P \right. \]
\[\left. \text{with } \mu = \mu(P) \right\} \]

Spectrum Conjecture:
\[d \geq 1, \varepsilon > 0 ; \text{ Then } \{ \mu \in S_d \mid \mu > \varepsilon \} \text{ is a finite set.} \]

[Fujita '92,'96]

▷ true for \(d = 2, 3 \) [Fujita '96]

Theorem: \(d \geq 1, \varepsilon > 0 ; \text{ Then } \{ \mu \in S^p_d \mid \mu > \varepsilon \} \text{ is a finite set.} \)

[P. '13]

Cor.: Spectrum conj. holds for \(\mathbb{Q} \)-Gorenstein polarized toric varieties

[P. '13]

▷ more generally: polytopes with \(\mathbb{Q} \)-Gorenstein normal fan

(\(\iff \) \(\mathbb{Q} \)-Gorenstein toric polarized varieties)
The Spectrum Conjecture of Fujita

\[S_d^p := \{ \mu \mid \exists \text{ smooth } d\text{-dim. lattice polytope } P \text{ with } \mu = \mu(P) \} \]

Theorem: \(d \geq 1, \varepsilon > 0 \); Then \(\{ \mu \in S_d^p \mid \mu > \varepsilon \} \) is a finite set. [P. '13]

Cor.: Spectrum conj. holds for \(\mathbb{Q} \)-Gorenstein polarized toric varieties [P. '13]

\[\text{more generally: polytopes with } \mathbb{Q} \text{-Gorenstein normal fan} \]
\[\iff \text{ } \mathbb{Q} \text{-Gorenstein toric polarized varieties} \]
The Spectrum Conjecture of Fujita

\[S_d^p := \{ \mu \mid \exists \text{ smooth } d\text{-dim. lattice polytope } P \text{ with } \mu = \mu(P) \} \]

Theorem: \(d \geq 1, \varepsilon > 0 \); Then \(\{ \mu \in S_d^p \mid \mu > \varepsilon \} \) is a finite set.

Cor.: Spectrum conj. holds for \(\mathbb{Q} \)-Gorenstein polarized toric varieties

more generally: polytopes with \(\mathbb{Q} \)-Gorenstein normal fan

\(\iff \) \(\mathbb{Q} \)-Gorenstein toric polarized varieties

Proof has two steps:

- only finitely many normal fans
- \(S_d^p \) finite for fixed normal fan
The Spectrum Conjecture of Fujita

\[S_d^p := \{ \mu \mid \exists \text{ smooth } d\text{-dim. lattice polytope } P \text{ with } \mu = \mu(P) \} \]

Theorem: \(d \geq 1, \varepsilon > 0 \); Then \(\{ \mu \in S_d^p \mid \mu > \varepsilon \} \) is a finite set. [P. '13]

Cor.: Spectrum conj. holds for \(\mathbb{Q} \)-Gorenstein polarized toric varieties [P. '13]

▶ more generally: polytopes with \(\mathbb{Q} \)-Gorenstein normal fan

\[\iff \quad \mathbb{Q} \text{-Gorenstein toric polarized varieties} \]

Proof has two steps:

▶ only finitely many normal fans

▶ \(S_d^p \) finite for fixed normal fan

▶ first step essentially uses

Theorem: \(m, d \geq 1 \)

Up to lattice equivalence, there are only finitely many lattice \(d \)-polytopes with \(m \) interior lattice points.

[Hensley, Lagarias & Ziegler, Pikhurko]