# application: fan

This application deals with polyhedral fans. You can define a fan, e.g. via its RAYS and MAXIMAL_CONES and compute several properties like HASSE_DIAGRAM and F_VECTOR.

**imports from:**common, graph, polytope

**uses:**group, ideal, topaz

**Objects**

A special big object class devoted to planar drawings of 3-polytopes. Its main functionality is the visualization.

**derived from:**PolyhedralComplex<Float>#### Properties of PlanarNet

These properties capture combinatorial information of the object. Combinatorial properties only depend on combinatorial data of the object like, e.g., the face lattice.

**DUAL_TREE**: common::Array<Pair<Int, Int>>The spanning tree in the Polytope::DUAL_GRAPH which defines the layout. Endoded as a list of edges, directed away from the root facet. Indices correspond to MAXIMAL_POLYTOPES as well as Polytope::FACETS.

**FLAPS**: common::Array<Pair<Int, Int>>List of directed edges in the primal graph Polytope::GRAPH which need flaps for gluing. Indices correspond to VERTICES. The orientation is chosen such that the facet in the layout is always on the left. In fact, the flaps define a spanning tree of Polytope::GRAPH.

**VF_MAP**: common::Map<Pair<Int, Int>, Int>Map which tells which vertex/facet pair of the 3-polytope is mapped to which vertex of the planar net. The dependence on the facets comes from the fact that most Polytope::VERTICES occur more than once in the planar net. The inverse is VF_MAP_INV.

**VF_MAP_INV**: common::Array<Int>Map which tells how the VERTICES of the planar net are mapped to the Polytope::VERTICES of the 3-polytope. Inverse of VF_MAP.

**VIF_CYCLIC_NORMAL**: common::Array<Array<Int>>Counter clockwise ordering of the VERTICES in each MAXIMAL_POLYTOPES. This is a copy of the property Polytope::VIF_CYCLIC_NORMAL of POLYTOPE.

These properties capture geometric information of the object. Geometric properties depend on geometric information of the object, like, e.g., vertices or facets.

#### User Methods of PlanarNet

A polyhedral complex. The derivation from PolyhedralFan works like the derivation of Polytope from Cone.

**derived from:**PolyhedralFan#### Properties of PolyhedralComplex

These properties capture combinatorial information of the object. Combinatorial properties only depend on combinatorial data of the object like, e.g., the face lattice.

**MAXIMAL_POLYTOPES**: common::IncidenceMatrix<NonSymmetric>Alias for property PolyhedralFan::MAXIMAL_CONES.

**MAXIMAL_POLYTOPES_INCIDENCES**: common::Array<IncidenceMatrix<NonSymmetric>>Array of incidence matrices of all maximal polytopes. Alias for property PolyhedralFan::MAXIMAL_CONES_INCIDENCES.

**N_MAXIMAL_POLYTOPES**: common::IntNumber of MAXIMAL_POLYTOPES. Alias for property PolyhedralFan::N_MAXIMAL_CONES.

These properties capture geometric information of the object. Geometric properties depend on geometric information of the object, like, e.g., vertices or facets.

These properties are for input only. They allow redundant information.

These properties are for visualization.

#### User Methods of PolyhedralComplex

These methods capture geometric information of the object. Geometric properties depend on geometric information of the object, like, e.g., vertices or facets.

**AMBIENT_DIM**() → Int

These methods are for visualization.

**VISUAL**() → Visual::PolyhedralFanVisualizes the polyhedral complex.

A polyhedral fan. The current restriction is that each cone in the fan has to be pointed. This will be relaxed later. If a fan is specified via INPUT_RAYS and INPUT_CONES each input cone must list all the input rays incident.

Once non-trivial linealities are allowed the following will apply: The RAYS always lie in a linear subspace which is complementary to the LINEALITY_SPACE.

#### Specializations of PolyhedralFan

#### Properties of PolyhedralFan

These properties capture combinatorial information of the object. Combinatorial properties only depend on combinatorial data of the object like, e.g., the face lattice.

**COMPLETE**: common::BoolThe polyhedral fan is

*complete*if its suport is the whole space.Due to undecidability issues this is checked heuristically only. See the remarks on SPHERE for details.

**CONES**: common::Array<IncidenceMatrix<NonSymmetric>>List of all cones of the fan of each dimension. Indices refer to RAYS.

**DUAL_GRAPH**: graph::Graph<Undirected>The graph whose nodes are the maximal cones which are connected if they share a common facet.

**F2_VECTOR**: common::Matrix<Integer, NonSymmetric>f

_{ik}is the number of incident pairs of i-dimensional cones and k-dimensional cones; the main diagonal contains the F_VECTOR.**F_VECTOR**: common::Vector<Integer>f

_{k}is the number of k-dimensional cones starting from dimension k=1.**GRAPH**: graph::Graph<Undirected>The graph of the fan intersected with a sphere, that is, the vertices are the rays which are connected if they are contained in a common two-dimensional cone.

**HASSE_DIAGRAM**: graph::FaceLatticeThe poset of subcones of the polyhedral fan organized as a directed graph. Each node corresponds to some proper subcone of the fan. The nodes corresponding to the rays and maximal cones appear in the same order as the elements of RAYS and MAXIMAL_CONES properties.

One special node represents the origin.

**MAXIMAL_CONES**: common::IncidenceMatrix<NonSymmetric>Non redundant list of maximal cones. Indices refer to RAYS. Cones which do not have any rays correspond to the trivial cone (contains only the origin). An empty fan does not have any cones.

**MAXIMAL_CONES_COMBINATORIAL_DIMS**: common::Array<Int>The combinatorial dimensions of the maximal cones.

**MAXIMAL_CONES_INCIDENCES**: common::Array<IncidenceMatrix<NonSymmetric>>Array of incidence matrices of all maximal cones.

These properties capture geometric information of the object. Geometric properties depend on geometric information of the object, like, e.g., vertices or facets.

**LINEALITY_SPACE**: common::MatrixSince we do not require our cones to be pointed: a basis of the lineality space of the fan. Co-exists with RAYS.

**MAXIMAL_CONES_FACETS**: common::SparseMatrix<Int, NonSymmetric>Tells for each maximal cone what are its facets. A negative number means that the corresponding row of FACET_NORMALS has to be negated.

**MAXIMAL_CONES_LINEAR_SPAN_NORMALS**: common::IncidenceMatrix<NonSymmetric>Tells for each maximal cone what is its linear span. Indices refer to LINEAR_SPAN_NORMALS. Rows correspond to MAXIMAL_CONES_FACETS.

**RAYS**: common::MatrixRays from which the cones are formed. Non-redundant. Co-exists with LINEALITY_SPACE.

These properties are for input only. They allow redundant information.

**INPUT_CONES**: common::Array<Set<Int>>Maybe redundant list of not necessarily maximal cones. Indices refer to INPUT_RAYS. Each cone must list all rays of INPUT_RAYS it contains. The cones are allowed to contain lineality. Cones which do not have any rays correspond to the trivial cone (contains only the origin). An empty fan does not have any cones.

Input section only. Ask for MAXIMAL_CONES if you want to know the maximal cones (indexed by RAYS).

**INPUT_LINEALITY**: common::MatrixVectors whose linear span defines a subset of the lineality space of the fan; redundancies are allowed.

Input section only. Ask for LINEALITY_SPACE if you want to know the lineality space.

**INPUT_RAYS**: common::MatrixRays from which the cones are formed. May be redundant. All vectors in the input must be non-zero. You also need to provide INPUT_CONES to define a fan completely.

Input section only. Ask for RAYS if you want a list of non-redundant rays.

The following properties are topological invariants.

**HOMOLOGY**: common::Array<HomologyGroup<Integer>>The homology of the intersection of the fan with the unit sphere.

**INTERSECTION_COMPLEX**: topaz::SimplicialComplexIf the fan is SIMPLICIAL the simplicial complex obtained by intersection the fan with the unit sphere. If the fan is not SIMPLICIAL the crosscut complex of the intersection.

Properties coming from associated toric varieties

**GORENSTEIN**: common::Bool**Only defined for PolyhedralFan<Rational>**A fan is

*Gorenstein*if it is Q_GORENSTEIN with Q_GORENSTEIN_INDEX equal to one.**Q_GORENSTEIN**: common::Bool**Only defined for PolyhedralFan<Rational>**A fan is

*Q-GORENSTEIN*if each maximal cone is Q_Gorenstein.**Q_GORENSTEIN_INDEX**: common::Int**Only defined for PolyhedralFan<Rational>**If a fan is Q_GORENSTEIN, then its

*Q-Gorenstein index*is the least common multiple of the Q-Gorenstein indices of its maximal cones. Otherwise Q_GORENSTEIN_INDEX is undefined.**SMOOTH_FAN**: common::Bool**Only defined for PolyhedralFan<Rational>**A fan is

*smooth*if all cones of the fan are smooth.

These properties are for visualization.

**INPUT_RAY_LABELS**: common::Array<String>Unique names assigned to the INPUT_RAYS. Similar to RAY_LABELS for RAYS.

**MAXIMAL_CONE_LABELS**: common::Array<String>Unique names assigned to the MAXIMAL_CONES. Similar to RAY_LABELS for RAYS.

**RAY_LABELS**: common::Array<String>Unique names assigned to the RAYS. If specified, they are shown by visualization tools instead of vertex indices.

For a polyhedral fan built from scratch, you should create this property by yourself, either manually in a text editor, or with a client program.

#### User Methods of PolyhedralFan

These methods capture combinatorial information of the object. Combinatorial properties only depend on combinatorial data of the object like, e.g., the face lattice.

**MAXIMAL_CONES_DIMS**() → Array<Int>

These methods capture geometric information of the object. Geometric properties depend on geometric information of the object, like, e.g., vertices or facets.

**AMBIENT_DIM**() → Int

These methods are for visualization.

**VISUAL**() → Visual::PolyhedralFanVisualizes the fan, intersected with the unit ball.

#### Permutations of PolyhedralFan

A homogeneous variant of SubdivisionOfVectors, similar to the derivation of PointConfiguration from VectorConfiguration.

**derived from:**SubdivisionOfVectors##### Type Parameters

Scalar default: Rational#### Properties of SubdivisionOfPoints

**REFINED_SPLITS**: common::Set<Int>The splits that are coarsenings of the subdivision. If the subdivision is regular these form the unique split decomposition of the corresponding weight function.

**N_POINTS**: common::IntThe number of POINTS in the configuration. Alias for property SubdivisionOfVectors::N_VECTORS.

**POINTS**: common::MatrixThe points of the configuration. Multiples allowed. Alias for property SubdivisionOfVectors::VECTORS.

**POLYHEDRAL_COMPLEX**: PolyhedralComplexThe polyhedral complex induced by the cells of the subdivision.

These properties are for visualization.

**POINT_LABELS**: common::Array<String>Unique names assigned to the POINTS. If specified, they are shown by visualization tools instead of point indices. Alias for property SubdivisionOfVectors::LABELS.

#### User Methods of SubdivisionOfPoints

These methods capture geometric information of the object. Geometric properties depend on geometric information of the object, like, e.g., vertices or facets.

**AMBIENT_DIM**()Ambient dimension of the point configuration (without the homogenization coordinate). Similar to PointConfiguration::AMBIENT_DIM.

**cell**(i) → PointConfiguration**DIM**()Affine dimension of the point configuration. Similar to PointConfiguration::DIM.

These methods are for visualization.

**VISUAL**() → Visual::PolyhedralFanVisualizes the SubdivisionOfPoints.

A subdivision of vectors, in contrast to PolyhedralFan this allows cells with interior points. Similar to the distinction between Cone and VectorConfiguration.

##### Type Parameters

Scalar default: Rational#### Properties of SubdivisionOfVectors

**MAXIMAL_CELLS**: common::IncidenceMatrix<NonSymmetric>Maximal cells of the polyhedral complex. Indices refer to VECTORS. Points do not have to be vertices of the cells.

These properties are for visualization.

**LABELS**: common::Array<String>Unique names assigned to the VECTORS. If specified, they are shown by visualization tools instead of point indices.

#### User Methods of SubdivisionOfVectors

**cell**(i) → VectorConfigurationReturns the

*i*-th cell of the complex as a VectorConfiguration

A PolyhedralFan with a symmetry group acting on the coordinates.

**derived from:**PolyhedralFan#### Properties of SymmetricFan

These properties are for input only. They allow redundant information.

**INPUT_CONES_REPS**: common::Array<Set<Int>>Maybe redundant list of not necessarily maximal cones, one from each orbit. All vectors in the input must be non-zero. Indices refer to INPUT_RAYS.

These properties capture information of the object that is concerned with the action of permutation groups.

**CONES_REPS**: common::Array<Array<Set<Int>>>List of all cones of all dimensions of the fan, one from each orbit. Indices refer to RAYS.

**MAXIMAL_CONES_IN_ORBITS**: common::Array<Set<Int>>Tells which maximal cone is in the orbit of which representative, indices refers to rows of MAXIMAL_CONES.

**MAXIMAL_CONES_REPS**: common::Array<Set<Int>>Non redundant list of maximal cones, one from each orbit. Indices refer to RAYS.

**MAXIMAL_CONES_REPS_FACETS**: common::SparseMatrix<Int, NonSymmetric>Tells for each maximal cone representative what are its facets. A negative number means that the corresponding row of REPS_FACET_NORMALS has to be negated.

**MAXIMAL_CONES_REPS_LINEAR_SPAN_NORMALS**: common::IncidenceMatrix<NonSymmetric>Tells for each maximal cone representative what is its linear span. Indices refer to REPS_LINEAR_SPAN_NORMALS. Rows correspond to MAXIMAL_CONES_REPS_FACETS

**RAYS_IMAGES**: common::Array<Array<Int>>Each row contains the image of all RAYS under one element of the symmetry group.

**RAYS_IN_ORBITS**: common::Array<Set<Int>>Tells which ray is in the orbit of which representative, indices refers to rows of RAYS.

**REPS_LINEAR_SPAN_NORMALS**: common::MatrixThe possible linear span normals of all maximal cone representatives.

**SYMMETRY_GENERATORS**: common::Array<Array<Int>>Each element of the array is a generator of the subgroup of the symmetric group acting on the coordintates. Each generator is represented by an Array whose ith entry is the image of ith coordinate.

**SYMMETRY_GROUP**: common::Array<Array<Int>>Each element of the array is an element of the symmetry group.

#### User Methods of SymmetricFan

**cone_representative**(i) → Cone

**Category:**VisualizationVisualization of a 3-polytope as a planar net.

**derived from:**Visual::Container#### User Methods of Visual::PlanarNet

**FLAPS**() → Visual::PlanarNetAdd flaps for gluing.

## User Functions

These clients provide consistency checks, e.g. whether a given list of rays and cones defines a polyhedral fan.

**check_fan**(rays, cones) → PolyhedralFanChecks whether a given set of

*rays*together with a list*cones*defines a polyhedral fan. If this is the case, the ouput is the PolyhedralFan defined by*rays*as INPUT_RAYS,*cones*as INPUT_CONES,*lineality_space*as LINEALITY_SPACE if this option is given.##### Parameters

Matrix rays Array< Set<int> > cones ##### Options

Matrix lineality_space Common lineality space for the cones.Bool verbose prints information about the check.##### Returns

PolyhedralFan **check_fan_objects**<Coord> (cones) → PolyhedralFanChecks whether the polytope::Cone objects form a polyhedral fan. If this is the case, returns that PolyhedralFan.

##### Type Parameters

Coord ##### Parameters

Array<Cone> cones ##### Options

Bool verbose prints information about the check.##### Returns

PolyhedralFan

Special purpose functions.

**building_set**(the, n) → PowerSet**cone_of_tubing**(G, T) → Cone**is_building_set**(the, n) → Bool**is_B_nested**(the, the) → Bool**tubes_of_graph**(G) → Set<Set>**tubes_of_tubing**(G, T) → Set<Set>**tubing_of_graph**(G) → Set<Set>

These clients provide standard constructions for PolyhedralFan objects, e.g. from polytopes (face_fan or normal_fan) or from other fans (via projection, refinement or product).

**common_refinement**(f1, f2) → PolyhedralFanComputes the common refinement of two fans.

**face_fan**<Coord> (p, v) → PolyhedralFanComputes the face fan of

*p*.##### Type Parameters

Coord ##### Parameters

Polytope p Vector v a relative interior point of the polytope##### Returns

PolyhedralFan **face_fan**<Coord> (p) → PolyhedralFanComputes the face fan of

*p*. the polytope has to be*CENTERED***graph_associahedron_fan**(G) → PolyhedralFan**groebner_fan**(I) → SymmetricFanCall wiki:external_software#gfan to compute the greobner fan of an ideal.

**hyperplane_arrangement**(H) → PolyhedralFan**normal_fan**<Coord> (p) → PolyhedralFan**planar_net**(p) → PlanarNet**product**(F1, F2) → PolyhedralFanConstruct a new polyhedral fan as the

*product*of two given polyhedral fans*F1*and*F2*.##### Parameters

PolyhedralFan F1 PolyhedralFan F2 ##### Options

Bool no_coordinates only combinatorial information is handled##### Returns

PolyhedralFan **projection**(P, indices) → PolyhedralFanOrthogonally project a pointed fan to a coordinate subspace.

The subspace the fan

*P*is projected on is given by indices in the set*indices*. The option*revert*inverts the coordinate list.##### Parameters

PolyhedralFan P Array<Int> indices ##### Options

Bool revert inverts the coordinate list##### Returns

PolyhedralFan **projection_full**(P) → PolyhedralFanOrthogonally project a fan to a coordinate subspace such that redundant columns are omitted, i.e., the projection becomes full-dimensional without changing the combinatorial type.

**secondary_fan**(M) → SymmetricFanCall wiki:external_software#gfan to compute the secondary fan of a point configuration.

**secondary_fan**(P) → SymmetricFanCall wiki:external_software#gfan to compute the secondary fan of a point configuration.

These clients provide constructions for PolyhedralComplex objects.

**mixed_subdivision**(P_0, P_1, VIF, t_0, t_1) → PolyhedralComplexCreate a weighted mixed subdivision of the Minkowski sum of two polytopes, using the Cayley trick. The polytopes must have the same dimension, at least one of them must be pointed. The vertices of the first polytope

*P_0*are weighted with*t_0*, and the vertices of the second polytope*P_1*with*t_1*.Default values are

*t_0*=*t_1*=1.The option

*relabel*creates an additional section VERTEX_LABELS.##### Parameters

Polytope P_0 the first polytopePolytope P_1 the second polytopeArray<Set> VIF the indices of the vertices of the mixed cellsScalar t_0 the weight for the vertices of*P_0*; default 1Scalar t_1 the weight for the vertices of*P_1*; default 1##### Options

Bool relabel ##### Returns

PolyhedralComplex **mixed_subdivision**(m, C, a) → PolyhedralComplexCreate a weighted mixed subdivision of a Cayley embedding of a sequence of polytopes. Each vertex

*v*of the*i*-th polytope is weighted with*t_i*, the*i*-th entry of the optional array*t*.The option

*relabel*creates an additional section VERTEX_LABELS.##### Parameters

Int m the number of polytopes giving rise to the Cayley embeddingPolytope C the Cayley embedding of the input polytopesArray<Set> a triangulation of C##### Options

Vector<Scalar> t scaling for the Cayley embedding; defaults to the all-1 vectorBool relabel ##### Returns

PolyhedralComplex **mixed_subdivision**(A) → PolyhedralComplexCreate a weighted mixed subdivision of a sequence (P1,...,Pm) of polytopes, using the Cayley trick. All polytopes must have the same dimension, at least one of them must be pointed. Each vertex

*v*of the*i*-th polytope is weighted with*t_i*, the*i*-th entry of the optional array*t*.The option

*relabel*creates an additional section VERTEX_LABELS.##### Parameters

Array<Polytope> A the input polytopes##### Options

Vector<Scalar> t scaling for the Cayley embedding; defaults to the all-1 vectorBool relabel ##### Returns

PolyhedralComplex **tiling_quotient**<Coord> (P, Q) → PolyhedralComplexCalculates the quotient of

*P*by*Q*+L, where*Q*+L is a lattice tiling. The result is a polytopal complex inside*Q*.##### Type Parameters

Coord ##### Parameters

Polytope P a polytopePolytope Q a polytope that tiles space##### Returns

PolyhedralComplex

## Common Option Lists

These options are for visualization.

**flap_options**Parameters to control the shapes of the flaps. The precise values are more or less randomly chosen. Should work fine for most polytopes whose edge lengths do not vary too much.

##### Options

Float WidthMinimum absolute minimum widthFloat WidthRelativeMinimum minimum relative width (w.r.t. length of first edge)Float Width absolute width, overrides the previousFloat FlapCutOff proportion by which outer edge of flap is shorter than the actual edge (on both sides)