Matching Polytopes

In this tutorial we will use polymake to construct and analyse matching polytopes.

First we construct a graph, the complete graph on four nodes:

> $K4=new props::Graph(4);
>
> for (my $i=0; $i<4; ++$i) {
>   for (my $j=$i+1; $j<4; ++$j) {
>     $K4->edge($i,$j);
>   }
> }

(See also the Tutorial on Graphs for more on the construction of graphs.)

Next we like to have the node-edge-incidence matrix of our graph. Since the latest release of polymake does not yet support this, we have to write the function ourselves:

> sub node_edge_incidences {
> 	my $g=shift;
>	my $A=new Matrix<Int>($g->nodes, $g->edges);
> 	my $k=0;
>	for (my $i=0; $i<$g->nodes-1; ++$i) {
>		foreach (@{$g->adjacent_nodes($i)}) {
>			if ($_>$i) {
>				$A->[$i]->[$k]=1;
>				$A->[$_]->[$k]=1;
>				++$k;
>			}
>		}
>	}
>	return $A;
> }

Now we can construct the node-edge-incidence matrix of our graph K4:

> $A=node_edge_incidences($K4);
> print $A;
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

With this we can now construct the constraint matrix consisting of an upper part for the nonnegativity constraints xe≥0 …

> $I=new Matrix<Int>([[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]);
> $Block1=new Matrix<Int>((new Vector<Int>([0,0,0,0,0,0])) | $I);

… and a lower part for the constraints Σe xe≤1 for each vertex v∈V, where the sum is over all edges e containing v:

> $Block2=new Matrix<Int>((new Vector<Int>([1,1,1,1])) | (-$A));

Now we can put both parts together and define the polytope:

> $Ineqs=new Matrix<Rational>($Block1 / $Block2);
> $P=new Polytope<Rational>(INEQUALITIES=>$Ineqs);

The matching polytope of K4 is the integer hull of P:

> $P_I=new Polytope<Rational>(POINTS=>$P->LATTICE_POINTS);

We can analyse some elementary properties of P_I

> print $P_I->POINTS;
1 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 0 0 0 1 0
1 0 0 0 1 0 0
1 0 0 1 0 0 0
1 0 0 1 1 0 0
1 0 1 0 0 0 0
1 0 1 0 0 1 0
1 1 0 0 0 0 0
1 1 0 0 0 0 1

> print $P_I->FACETS;
0 0 0 0 0 0 1
0 1 0 0 0 0 0
1 0 0 0 -1 -1 -1
1 -1 0 0 -1 -1 0
1 0 -1 0 -1 0 -1
1 -1 -1 0 -1 0 0
1 0 0 -1 0 -1 -1
1 -1 0 -1 0 -1 0
1 0 -1 -1 0 0 -1
1 -1 -1 -1 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0

> print $P_I->N_FACETS;
14

… and compare them with the according properties of the defining polytope P:

> print $P->VERTICES;
1 0 0 0 1 0 0
1 0 1 0 0 0 0
1 1/2 1/2 0 1/2 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1/2 0 1/2 0 1/2 0
1 0 1/2 1/2 0 0 1/2
1 0 0 0 1/2 1/2 1/2
1 0 0 0 0 1 0
1 0 0 1 0 0 0
1 0 0 0 0 0 1
1 1 0 0 0 0 1
1 0 1 0 0 1 0
1 0 0 1 1 0 0

> print $P->VOLUME;
1/72

> print $P_I->VOLUME;
1/90

Next we analyse the combinatorics of P_I: The Gale diagram of ''facet0''

> print $P_I->AMBIENT_DIM, " ", $P_I->DIM;
6 6

> print $P_I->F_VECTOR;
10 39 78 86 51 14

> print $P_I->FACET_SIZES;
8 8 6 6 6 6 6 6 6 6 8 8 8 8

> $facet0=facet($P_I,0);

> print $facet0->AMBIENT_DIM, " ", $facet0->DIM;
6 5

> print rows_labeled($facet0->VERTICES_IN_FACETS);
0:0 1 2 3 4 5 6
1:1 2 4 6 7
2:2 4 5 6 7
3:1 3 4 6 7
4:3 4 5 6 7
5:0 2 3 4 5 7
6:0 1 2 3 4 7
7:0 1 3 5 6 7
8:0 1 2 5 6 7

> $facet0->GALE;

The Gale diagram of facet0 is depicted on the right.

tutorial/matching_polytopes.txt · Last modified: 2017/07/19 09:14 by oroehrig
Except where otherwise noted, content on this wiki is licensed under the following license: CC Attribution-Noncommercial-Share Alike 4.0 International
Recent changes RSS feed Donate Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki